首页> 外文OA文献 >Social collaborative service recommendation approach based on user’s trust and domain-specific expertise
【2h】

Social collaborative service recommendation approach based on user’s trust and domain-specific expertise

机译:基于用户信任和特定领域专业知识的社交协作服务推荐方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A few years ago, the Internet of (Web) Service vision came to offer services to all aspects of life and business. The increasing number of Web services make service recommendation a directive research to help users discover services. Furthermore, the rapid development of social network has accelerated the development of social recommendation approach to avoid the data sparsity and cold-start problems that are not treated very well in the collaborative filtering approach. On the one hand, the pervasive use of the social media provides a big social information about the users (e.g., personnel data, social activities, relationships). Hence, the use of trust relation becomes a necessity to filter and select only the useful information. Several trust-aware service recommender systems have been proposed in literature but they do not consider the time in trust level detection among users. On the other hand, in the reality, the majority of users prefer the advice not only of their trusted friends but also their expertise in some domain-specific. In fact, the taking into account of user’ s expertise in recommendation step can resolve the user’ s disorientation problem. For these reasons, we present, in this paper, a Web service decentralized discovery approach which is based on two complementary mechanisms. The trust detection is the first mechanism to detect the social trust level among users. This level is defined in terms of the users’ interactions for a period of time and their interest similarity which are inferred from their social profiles. The service recommendation is the second mechanism which combines the social and collaborative approaches to recommend to the active user the appropriate services according to the expertise level of his most trustworthy friends. This level is extracted from the friends’ past invocation histories according to the domain-specific which is known in advance in the target user’s query. Performance evaluation shows that each proposed mechanism achieves good results. The proposed Level of social Trust (LoT) metric gives better precision more than 50% by comparing with the same metric without taking into account the time factor. The proposed service recommendation mechanism which based on the trust and the domain-specific expertise gives, firstly, a RMSE value lower than other trust-aware recommender systems like TidalTrust, MoleTrust and TrustWalker.Secondly, it provides a better response rate than the recommendation mechanism which based only on trust with a difference equal to 4%.
机译:几年前,(网络)服务愿景的互联网来为生命和业务的各个方面提供服务。越来越多的Web服务使服务推荐一个指令研究,以帮助用户发现服务。此外,社会网络的快速发展加速了社会推荐方法的发展,以避免在协作过滤方法中不太良好地治疗的数据稀疏和冷启动问题。一方面,社交媒体的普遍使用提供了有关用户的大社会信息(例如,人事数据,社交活动,关系)。因此,使用信任关系成为需要过滤和选择有用信息的必需品。在文献中提出了几种信任感知服务推荐系统,但他们不考虑用户之间的信任级别检测时间。另一方面,在现实中,大多数用户不仅喜欢他们可信赖的朋友,而且还更喜欢其信任的朋友,也更喜欢他们的专业知识。事实上,考虑到用户在推荐步骤中的专业知识可以解决用户的迷失方案问题。由于这些原因,我们在本文中存在,这是一种基于两个互补机制的网络服务分散的发现方法。信任检测是检测用户之间的社会信任级别的第一个机制。该级别在用户的交互方面定义了一段时间的相互作用及其从社交档案推断的兴趣相似性。服务建议是根据他最值得信赖的朋友的专业级别相结合的第二种机制,将社会和协作方法推荐给活动用户适当的服务。根据特定于域特定于目标用户查询已知的特定于特定于特定于特定于域中的调用历史,从朋友的过去的调用历史中提取。绩效评估表明,每个拟议的机制都能实现良好的效果。通过比较时间因素比较,建议的社会信任水平(批次)公制通过与相同的公制进行比较,提供了更好的精度超过50%。基于信任和域特定专业知识的建议的服务推荐机制给出,首先,RMSE值低于Tidaltrust,Moltrust和Trustwalker等其他信任感知的推荐系统。它提供比推荐机制更好的响应率仅基于信任,差异等于4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号