首页> 外文OA文献 >Dynamics of two-point spatial correlations for randomly hopping lattice gases: One-dimensional models
【2h】

Dynamics of two-point spatial correlations for randomly hopping lattice gases: One-dimensional models

机译:随机跳跃格子气体的两点空间相关动力学:一维模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the randomization of correlated, translationally invariant distributions of indistinguishable particles on lattices by random hopping, possibly involving several jump distances with generally different rates (and where double occupancy is excluded). Probabilities for various subconfigurations of n empty sites satisfy infinite closed sets of linear equations (for each n) in which the generator of the dynamics is self-adjoint. We provide a detailed spectral analysis of this generator for the two-point probabilities (or corresponding correlations) on a one-dimensional lattice. For just nearest-neighbor (1NN) and second-nearest-neighbor (2NN) jumps, the dynamics changes smoothly as a function of the ratio of the 2NN- to 1NN-jump rates up to the critical value ¼, where there is a nonanalytic transition in the dynamical structure. Generalizations are indicated.
机译:我们考虑通过随机跳跃在格子上的无区别颗粒上的相关性翻译不变性分布的随机化,可能涉及具有大致不同速率的几个跳跃距离(以及排除双重占用的地方)。 N个空网站的各种子配置的概率满足无限闭合的线性方程(对于每个n),其中动态的发电机是自伴随的。我们提供了在一维格子上的两点概率(或相应相关性)的该发生器的详细光谱分析。对于最近的邻居(1NN)和第二邻邻(2NN)跳转,动力学顺利地变化为2nn-1nn-jump率的函数直至临界值¼,其中存在非分析性在动态结构中过渡。指出了概括。

著录项

  • 作者

    J. W. Evans; D. K. Hoffman;

  • 作者单位
  • 年度 1984
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号