首页> 外文OA文献 >Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices
【2h】

Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices

机译:基于自动编码的基于自动编码器的缺陷分离,用于检查显示设备的背景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigated a novel method for separating defects from the background for inspecting display devices. Separation of defects has important applications such as determining whether the detected defects are truly defective and the quantification of the degree of defectiveness. Although many studies on estimating patterned background have been conducted, the existing studies are mainly based on the approach of approximation by low-rank matrices. Because the conventional methods face problems such as imperfect reconstruction and difficulty of selecting the bases for low-rank approximation, we have studied a deep-learning-based foreground reconstruction method that is based on the auto-encoder structure with a regression layer for the output. In the experimental studies carried out using mobile display panels, the proposed method showed significantly improved performance compared to the existing singular value decomposition method. We believe that the proposed method could be useful not only for inspecting display devices but also for many applications that involve the detection of defects in the presence of a textured background.
机译:我们研究了从背景用于检查显示装置分离的缺陷的新方法。的缺陷分离具有重要的应用,如确定所检测到的缺陷是否是真正的缺陷和缺陷的程度的定量。虽然估计图案化背景许多研究已经进行,在现有的研究主要是基于近似的由低秩矩阵的方法。因为传统的方法面临的问题,例如不完美重建和选择用于低秩近似的碱的困难,我们已经研究了基于自动编码器结构具有用于输出一个回归层的基于深学习前景重建方法。在使用移动显示面板进行的实验研究中,所提出的方法比现有奇异值分解法显示显著改进的性能。我们认为,该方法不仅可以用于检查显示设备,而且对于涉及缺陷的纹理背景的存在检测的许多应用是有用的。

著录项

  • 作者

    Heeyeon Jo; Jeongtae Kim;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号