首页> 外文OA文献 >A Real-Time Numerical Decoupling Method for Multi-DoF Magnetic Levitation Rotary Table
【2h】

A Real-Time Numerical Decoupling Method for Multi-DoF Magnetic Levitation Rotary Table

机译:多自由度磁悬浮旋转台的实时数值解耦方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic levitation technology shows promise for realizing multiple degrees of free precision motion for modern manufacturing, as the bearing and guiding parts are not used. However, motion decoupling in a magnetically levitated (maglev) system is difficult because it is hard to derive accurate magnetic force and a torque model considering the translation and rotation in all axes. In this work, a magnetic levitation rotary table that has the potential to realize unlimited rotation around the vertical axis and a relatively long stroke in the horizontal plane is proposed and analyzed, and the corresponding real-time numerical decoupling method is presented. The numerical magnetic force and torque model solves the current to magnetic force and torque transformation matrix, and the matrix is used to allocate the exact current in each coil phase to produce the required motion in the magnetically levitated (maglev) system. Next, utilizing a high-level synthesis tool and hardware description language, the proposed motion-decoupling module is implemented on a field programmable gate array (FPGA). To realize real-time computation, a pipelined program architecture and finite-state machine with a strict timing sequence are employed for maximum data throughput. In the last decoupling module of the maglev system, the delay for each sampling point is less than 200 μ s. To illustrate and evaluate real-time solutions, they are presented via the DAC adapter on the oscilloscope and stored in the SD card. The error ratios of the force and torque results solved by the numerical wrench model were less than 5 % and 10 % using the solutions from the boundary element method (BEM) program package RadiaTM as a benchmark.
机译:磁悬浮技术显示了实现现代制造的多程度的自由精度运动,因为不使用轴承和引导部件。然而,在磁悬浮(Maglev)系统中的运动去耦是难以考虑到所有轴中的平移和旋转的精确磁力和扭矩模型。在这项工作中,提出了一种磁悬浮台,其具有在水平平面围绕垂直轴围绕垂直轴和相对长的行程来实现无限旋转的电位,并且呈现了相应的实时数值去耦方法。数值磁力和扭矩模型解决了磁力和扭矩变换矩阵的电流,并且矩阵用于分配每个线圈相中的精确电流,以在磁悬浮(Maglev)系统中产生所需的运动。接下来,利用高级合成工具和硬件描述语言,所提出的运动解耦模块在现场可编程门阵列(FPGA)上实现。为了实现实时计算,使用具有严格定时序列的流水线程序架构和有限状态机器,用于最大数据吞吐量。在Maglev系统的最后一个去耦模块中,每个采样点的延迟小于200μs。为了说明和评估实时解决方案,它们通过示波器上的DAC适配器呈现并存储在SD卡中。使用来自边界元方法(BEM)程序包Radiatm作为基准,数值扳手模型解决的力和扭矩结果的误差比率小于5%和10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号