首页> 外文OA文献 >Adaptive Sample Weight for Machine Learning Computer Vision Algorithms in V2X Systems
【2h】

Adaptive Sample Weight for Machine Learning Computer Vision Algorithms in V2X Systems

机译:V2X系统中机器学习计算机视觉算法的自适应样品重量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In machine learning, training sample set management has an important impact on the performance of visual detection and tracking algorithms, as corrupted training samples degrade the tracking performance, especially in practical scenarios such as vehicular networks. However, how to evaluate and remove the corrupted training samples still remains a challenging topic. In this paper, we propose a novel scheme to remove the corrupted training samples in visual tracking, which will improve the tracking performance dramatically. In the proposed scheme, a novel training sample set management method based on the adaptive sample weight is presented. Specifically, similarity learning is first utilized to evaluate the quality of training samples with similarity score. Then, if the similarity score is below a certain threshold, the training sample is deemed as the corrupted one and is removed from the training sample set. The experimental results show that the proposed scheme obtains superior performances on visual tracking benchmarks and vehicular scenarios.
机译:在机器学习中,培训样本集管理对视觉检测和跟踪算法的性能具有重要影响,因为损坏的训练样本降低了跟踪性能,尤其是在车辆网络等实际情况中。但是,如何评估和删除损坏的培训样本仍然是一个具有挑战性的话题。在本文中,我们提出了一种新颖的方案来消除视觉跟踪中的损坏培训样本,这将急剧提高跟踪性能。在所提出的方案中,提出了一种基于自适应样本重量的新型训练样本集管理方法。具体地,首先利用相似性学习来评估具有相似性得分的训练样本的质量。然后,如果相似度得分低于某个阈值,则训练样本被认为是损坏的,并且从训练样本集中移除。实验结果表明,该方案在视觉跟踪基准和车辆方案上获得了优异的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号