首页> 外文OA文献 >Use of Genetic Algorithm for Cohesive Summary Extraction to Assist Reading Difficulties
【2h】

Use of Genetic Algorithm for Cohesive Summary Extraction to Assist Reading Difficulties

机译:使用遗传算法进行凝聚概要提取,以帮助阅读困难

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Learners with reading difficulties normally face significant challenges in understanding the text-based learning materials. In this regard, there is a need for an assistive summary to help such learners to approach the learning documents with minimal difficulty. An important issue in extractive summarization is to extract cohesive summary from the text. Existing summarization approaches focus mostly on informative sentences rather than cohesive sentences. We considered several existing features, including sentence location, cardinality, title similarity, and keywords to extract important sentences. Moreover, learner-dependent readability-related features such as average sentence length, percentage of trigger words, percentage of polysyllabic words, and percentage of noun entity occurrences are considered for the summarization purpose. The objective of this work is to extract the optimal combination of sentences that increase readability through sentence cohesion using genetic algorithm. The results show that the summary extraction using our proposed approach performs better in -measure, readability, and cohesion than the baseline approach (lead) and the corpus-based approach. The task-based evaluation shows the effect of summary assistive reading in enhancing readability on reading difficulties.
机译:阅读困难的学习者通常在理解基于文本的学习资料方面面临重大挑战。在这方面,需要一个辅助摘要,以帮助这些学习者以极少的难度接近学习文档。提取摘要中的一个重要问题是从文本中提取凝聚摘要。现有的摘要方法主要关注信息句而不是粘性句子。我们考虑了几个现有功能,包括句子位置,基数,标题相似度和关键字来提取重要句子。此外,依赖于平均句子长度,触发词的百分比,多电解单词百分比和名词实体出现百分比的概要可读性相关的特征被认为是为了总结目的。这项工作的目的是利用遗传算法提取通过句子凝聚的句子的最佳组合。结果表明,使用我们所提出的方法的摘要提取比基线方法(铅)和基于语料库的方法更好地表现出更好的措施,可读性和凝聚力。基于任务的评估显示了摘要辅助阅读在提高阅读困难中的可读性方面的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号