首页> 外文OA文献 >An Intersection-First Approach for Road Network Generation from Crowd-Sourced Vehicle Trajectories
【2h】

An Intersection-First Approach for Road Network Generation from Crowd-Sourced Vehicle Trajectories

机译:交叉路口从人群轨迹的道路网络发电方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extracting highly detailed and accurate road network information from crowd-sourced vehicle trajectory data, which has the advantages of being low cost and able to update fast, is a hot topic. With the rapid development of wireless transmission technology, spatial positioning technology, and the improvement of software and hardware computing ability, more and more researchers are focusing on the analysis of Global Positioning System (GPS) trajectories and the extraction of road information. Road intersections are an important component of roads, as they play a significant role in navigation and urban planning. Even though there have been many studies on this subject, it remains challenging to determine road intersections, especially for crowd-sourced vehicle trajectory data with lower accuracy, lower sampling frequency, and uneven distribution. Therefore, we provided a new intersection-first approach for road network generation based on low-frequency taxi trajectories. Firstly, road intersections from vector space and raster space were extracted respectively via using different methods; then, we presented an integrated identification strategy to fuse the intersection extraction results from different schemes to overcome the sparseness of vehicle trajectory sampling and its uneven distribution; finally, we adjusted road information, repaired fractured segments, and extracted the single/double direction information and the turning relationships of the road network based on the intersection results, to guarantee precise geometry and correct topology for the road networks. Compared with other methods, this method shows better results, both in terms of their visual inspections and quantitative comparisons. This approach can solve the problems mentioned above and ensure the integrity and accuracy of road intersections and road networks. Therefore, the proposed method provides a promising solution for enriching and updating navigable road networks and can be applied in intelligent transportation systems.
机译:从人群源车轨迹数据中提取高度详细和准确的道路网络信息,这具有低成本和快速更新的优点,是一个热门话题。随着无线传输技术的快速发展,空间定位技术以及软件和硬件计算能力的提高,越来越多的研究人员专注于对全球定位系统(GPS)轨迹的分析和道路信息的提取。道路交叉路口是道路的重要组成部分,因为它们在导航和城市规划中发挥着重要作用。尽管对该主题有很多研究,确定公路交叉口仍然具有挑战性,特别是对于具有较低精度,更低的采样频率和不均匀分布的人群源轨迹数据。因此,我们为基于低频出租车轨迹提供了一种新的交叉路网络生成方法。首先,通过使用不同的方法分别通过矢量空间和光栅空间的道路交叉点来提取;然后,我们提出了一个集成的识别策略来融合不同方案的交叉口提取结果来克服车辆轨迹采样的稀疏性及其不均匀分布;最后,我们调整了道路信息,修复了裂缝段,并根据交叉口提取了单/双向信息和道路网络的转动关系,以保证对道路网络的精确几何和正确拓扑。与其他方法相比,该方法在目视检查和定量比较方面表现出更好的结果。这种方法可以解决上述问题,并确保道路交叉路网络的完整性和准确性。因此,该方法提供了用于丰富和更新可导航道路网络的有希望的解决方案,并且可以应用于智能运输系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号