首页> 外文OA文献 >Probabilistic assessment of drought states using a dynamic naive Bayesian classifier
【2h】

Probabilistic assessment of drought states using a dynamic naive Bayesian classifier

机译:利用动态朴素贝叶斯分类器对干旱国家的概率评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drought is a slow-onset hazard affecting ecosystems and human society. Although it is difficult to assess the uncertainty associated with drought, it is very important to identify the severity of drought. Using a dynamic naive Bayesian classifier (DNBC), this study combined the strengths of three conventional drought indices, the Standardized Precipitation Index (SPI), the Evaporative Stress Index (ESI), and the Vegetation Health Index (VHI), and developed a DNBC-based drought index (DNBC-DI) to identify overall drought conditions. After comparing recent actual drought events with the drought indices, the drought severity was classified into five states using them: severe wet, moderate wet, normal, moderate drought, and severe drought. We evaluated the performance of the DNBC-DI for representing actual hydrological droughts that occurred since 2000. In this study, the actual hydrological drought was represented by the Streamflow Drought Index (SDI). Our results indicated that the accuracy of the DNBC-DI was 60%, which was higher than SPI (40%), ESI (40%), and VHI (0.41%). Even though in practice, the evaluation of drought is highly dependent on the drought index, this study tried to develop a practical drought index that can be used for comprehensive drought assessment.
机译:干旱是影响生态系统和人类社会的慢速危险。虽然很难评估与干旱相关的不确定性,但识别干旱的严重程度非常重要。使用动态朴素贝叶斯分类器(DNBC),本研究结合了三种常规干旱指数的优势,标准化降水指数(SPI),蒸发应激指数(ESI)和植被健康指数(VHI),并开发了DNBC基于干旱指数(DNBC-DI)以识别整体干旱条件。在与干旱指标进行最近的实际干旱事件后,干旱严重程度使用它们分为五种州:严重潮湿,中度湿,正常,温和的干旱和严重干旱。我们评估了DNBC-DI的表现,用于代表自2000年以来发生的实际水文干旱。在本研究中,实际的水文干旱由流流干旱指数(SDI)表示。我们的结果表明,DNBC-DI的准确性为60%,高于SPI(40%),ESI(40%)和VHI(0.41%)。尽管在实践中,对干旱的评估高度依赖于干旱指数,这项研究试图开发一种可用于综合干旱评估的实际干旱指数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号