首页> 外文OA文献 >A Bi-Objective Vehicle-Routing Problem with Soft Time Windows and Multiple Depots to Minimize the Total Energy Consumption and Customer Dissatisfaction
【2h】

A Bi-Objective Vehicle-Routing Problem with Soft Time Windows and Multiple Depots to Minimize the Total Energy Consumption and Customer Dissatisfaction

机译:具有软时间窗口和多个仓库的双目标车辆路由问题,以最大限度地减少总能量消耗和客户不满

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, the impact of the energy crisis and environment pollution on quality of life has forced industry to actively participate in the development of a sustainable society. Simultaneously, customer satisfaction improvement has always been a goal of businesses. It is recognized that efficient technologies and advanced methods can help transportation companies find a better balance between progress in energy saving and customer satisfaction. This paper investigates a bi-objective vehicle-routing problem with soft time windows and multiple depots, which aims to simultaneously minimize total energy consumption and customer dissatisfaction. To address the problem, we first develop mixed-integer programming. Then, an augmented ϵ -constraint method is adopted to obtain the optimal Pareto front for small problems. It is very time consuming for the augmented ϵ -constraint method to precisely solve even medium-sized problems. For medium- and large-sized problems, two Non-dominated Sorting Genetic Algorithm-II (NSGA-II)-based heuristics with different rules for generating initial solutions and offspring are designed. The performance of the proposed methods is evaluated by 100 randomly generated instances. Computational results show that the second NSGA-II-based heuristic is highly effective in finding approximate non-dominated solutions for small-size and medium-size instances, and the first one is performs better for the large-size instances.
机译:近年来,能源危机和环境污染对生活质量的影响已强迫行业积极参与可持续社会的发展。同时,客户满意的改善一直是企业的目标。人们认识到,有效的技术和先进的方法可以帮助运输公司在节能和客户满意度方面找到更好的平衡。本文调查了具有软时间窗和多个仓库的双目标车辆路由问题,旨在同时最大限度地降低总能耗和客户不满。要解决问题,我们首先开发混合整数编程。然后,采用增强ε-concraint方法来获得最佳帕累托前面进行小问题。增强ε-collaint方法非常耗时,精确地解决了甚至正在解决中型问题。对于中型和大型问题,设计了两种非主导的分类遗传算法-II(NSGA-II)基于不同规则的基于用于生成初始解决方案和后代的遗传学。所提出的方法的性能由100个随机生成的实例评估。计算结果表明,基于NSGA-II的启发式高度有效地查找大尺寸和中型实例的近似非主导解决方案,并且第一个对大尺寸实例执行更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号