首页> 外文OA文献 >Relation Extraction Based on Fusion Dependency Parsing from Chinese EMRs
【2h】

Relation Extraction Based on Fusion Dependency Parsing from Chinese EMRs

机译:基于融合依赖性解析的关系提取

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Electronic Medical Record (EMR) contains a great deal of medical knowledge related to patients, which has been widely used in the construction of medical knowledge graphs. Previous studies mainly focus on the features based on surface semantics of EMRs for relation extraction, such as contextual feature, but the features of sentence structure in Chinese EMRs have been neglected. In this paper, a fusion dependency parsing-based relation extraction method is proposed. Specifically, this paper extends basic features with medical record feature and indicator feature that are applicable to Chinese EMRs. Furthermore, dependency syntactic features are introduced to analyse the dependency structure of sentences. Finally, the F1 value of relation extraction based on extended features is 4.87% higher than that of relation extraction based on basic features. And compared with the former, the F1 value of relation extraction based on fusion dependency parsing is increased by 4.39%. The results of experiments performed on a Chinese EMR data set show that the extended features and dependency parsing all contribute to the relation extraction.
机译:电子医疗记录(EMR)包含与患者相关的大量医学知识,这已广泛用于建设医学知识图表。以前的研究主要集中在基于EMR的表面语义上的特征,以进行关系提取,例如上下文特征,但中国EMRS中的句子结构的特征被忽略了。本文提出了一种基于融合依赖性解析的关系提取方法。具体而言,本文将基本功能扩展了具有适用于中国EMR的医疗记录功能和指示器功能。此外,引入了依赖性句法特征来分析句子的依赖关系。最后,基于扩展特征的关系提取的F1值高于基于基本特征的关系提取的4.87%。与前者相比,基于融合依赖解析的关系提取的F1值增加了4.39%。在中国EMR数据集上执行的实验结果表明,扩展特征和依赖性解析所有有助于提取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号