首页> 外文OA文献 >Fibre Bragg grating fabrication in germanosilicate fibres with 244nm femtosecond laser light
【2h】

Fibre Bragg grating fabrication in germanosilicate fibres with 244nm femtosecond laser light

机译:纤维布拉格光栅在锗硅酸盐纤维中的制造,具有244nm Femtosecond激光

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to fabricate strong and extraordinarily stable Bragg gratings in any type of fibre using femtosecond laser light has attracted much interest in the recent past. The induced index change has been attributed to glass densification brought about by nonlinear multiphoton ionisation resulting in bond breaking, local melting and rapid cooling occurring after optical breakdown by the high-energy femtosecond light. In this paper, a preliminary comparative study between fibre Bragg grating fabrication in germanosilicate fibre using 244nm femtosecond source with a repetition rate of 250kHz and 200fs pulse duration and a 244nm CW frequency doubled argon-ion source is presented. The reflectivities achieved in both cases were close to identical for similar writing fluences, as were the isochronal annealing profiles. This indicated that despite the very high repetition rate used, the collective heat generated by the femtosecond radiation plays no role in the compaction of the glass matrix. The index change observed in this case is a result of single photon absorption into known defect centres - the laser intensity was insufficient to excite the glass band edge leading to glass compaction. No qualitative difference in index change between CW and short-pulse excitation of these defects is found.
机译:使用飞秒激光在任何​​类型的光纤中制造坚固且非常稳定的布拉格光栅的能力在最近引起了人们的极大兴趣。诱导的折射率变化归因于非线性多光子电离引起的玻璃致密化,导致高能飞秒光在光学击穿后发生键断裂,局部熔化和快速冷却。本文介绍了使用244nm飞秒光源,重复频率为250kHz,脉冲持续时间为200fs和244nm CW倍频氩离子源在锗硅酸盐光纤中制造布拉格光栅的初步比较研究。对于类似的书写通量,在两种情况下获得的反射率都接近,等时退火曲线也是如此。这表明尽管使用了很高的重复率,但是飞秒辐射产生的集体热量在玻璃基质的压实中没有作用。在这种情况下观察到的折射率变化是单个光子吸收到已知缺陷中心的结果-激光强度不足以激发玻璃带边缘,从而导致玻璃致密化。在这些缺陷的连续波和短脉冲激发之间,折射率变化没有定性差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号