首页> 外文OA文献 >ReS2 Charge Trapping Synaptic Device for Face Recognition Application
【2h】

ReS2 Charge Trapping Synaptic Device for Face Recognition Application

机译:RES2电荷捕获突触突触装置,用于面部识别应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Synaptic devices are necessary to meet the growing demand for the smarter and more efficient system. In this work, the anisotropic rhenium disulfide (ReS2) is used as a channel material to construct a synaptic device and successfully emulate the long-term potentiation/depression behavior. To demonstrate that our device can be used in a large-scale neural network system, 165 pictures from Yale Face database are selected for evaluation, of which 120 pictures are used for artificial neural network (ANN) training, and the remaining 45 pictures are used for ANN testing. A three-layer ANN containing more than 105 weights is proposed for the face recognition task. Also 120 continuous modulated conductance states are selected to replace weights in our well-trained ANN. The results show that an excellent recognition rate of 100% is achieved with only 120 conductance states, which proves a high potential of our device in the artificial neural network field.
机译:抽象突触设备是满足对更智能和更有效的系统不断增长的需求。在这项工作中,各向异性铼二硫化物(RES2)用作构建突触装置的通道材料,并成功地模拟长期增强/抑郁行为。为了证明我们的设备可以在大型神经网络系统中使用,选择来自耶鲁脸部数据库的165张图片进行评估,其中120张图片用于人工神经网络(ANN)训练,并且剩余的45张图片使用对于ANN测试。为面部识别任务提出了一个包含超过105重量的三层ANN。选择120个连续调制的电导状态以取代我们训练有素的ANN中的重量。结果表明,只有120个电导状态实现了100%的优异识别率,这证明了我们在人工神经网络领域中的设备的高潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号