首页> 外文OA文献 >A method for mobile device positioning using a sensor network of BLE beacons, approximation of the RSSI value and artificial neural networks
【2h】

A method for mobile device positioning using a sensor network of BLE beacons, approximation of the RSSI value and artificial neural networks

机译:一种使用BLE信标的传感器网络的移动设备定位方法,RSSI值和人工神经网络的近似

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper considers the development of a method for positioning a mobile device using a sensor network of BLE-beacons, the approximation of RSSI values and artificial neural networks. The aim of the work is to develop a method for positioning small-scale industrial mechanization equipment for building unmanned systems for product movement tracking. The work is divided into four main parts: data synthesis, signal filtering, selection of BLE beacons, translation of the RSSI values into a distance, and multilateration. A simplified Kalman filter is proposed for filtering the input signal to suppress Gaussian noise. A description of two approaches to translating the RSSI value into a distance is given: an exponential approximation function with a coefficient of determination of 0.6994 and an artificial feedforward neural network. A comparison of the results of these approaches is carried out on several test samples: a training one, a test sample at a known distance (0–50 meters) and a test sample at an unknown distance (60–100 meters). The artificial neural network is shown to perform better in all experiments, except for the test sample at a known distance (0–50 meters), for which the r.m.s. error is higher by 0.02 m 2 than that for the approximation function, which can be neglected. An algorithm for positioning a mobile device based on the multilateration method is proposed. Experimental studies of the developed method have shown that the positioning error does not exceed 0.9 meters in a 5×5.5 m room under monitoring. The positioning accuracy of a mobile device using the proposed method in the experiment is 40.9 % higher. Experimental studies are also conducted in a 58.4×4.5 m room, showing more accurate results compared to similar studies.
机译:本文考虑了使用BLE-信标的传感器网络定位移动设备的方法的开发,RSSI值和人工神经网络的近似。该工作的目的是开发一种用于定位小型工业机械化设备的方法,用于构建产品运动跟踪的无人驾驶系统。该工作分为四个主要部分:数据综合,信号滤波,BLE信标选择,将RSSI值转换为距离和多边。提出了一种简化的卡尔曼滤波器来过滤输入信号以抑制高斯噪声。给出了将RSSI值转换为距离的两种方法的描述:指数近似函数,其确定系数为0.6994和人工前馈神经网络。这些方法的结果比较在几种测试样品上进行:训练,在已知距离(0-50米)处的测试样品和未知距离(60-100米)的测试样品。除了在已知距离(0-50米)的测试样品之外,人工神经网络在所有实验中表现得更好,以便为下午距离(0-50米)。误差高于0.02米的近似函数,这可以忽略0.02 m 2。提出了一种基于多边方法定位移动设备的算法。开发方法的实验研究表明,在监测下,定位误差在5×5.5米的房间中不超过0.9米。在实验中使用所提出的方法的移动设备的定位精度高出40.9%。实验研究也在58.4×4.5米的房间中进行,与类似的研究相比显示更准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号