首页> 外文OA文献 >Near Real-Time Classification of Iron Ore Lithology by Applying Fuzzy Inference Systems to Petrophysical Downhole Data
【2h】

Near Real-Time Classification of Iron Ore Lithology by Applying Fuzzy Inference Systems to Petrophysical Downhole Data

机译:通过将模糊推理系统应用于岩石物理井下数据来近实时分类铁矿石岩性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fluctuating commodity prices have repeatedly put the mining industry under pressure to increase productiveness and efficiency of their operations. Current procedures often rely heavily on manual analysis and interpretation although new technologies and analytical procedures are available to automate workflows. Grade control is one such issue where the laboratory assay turn-around times cannot beat the shovel. We propose that for iron ore deposits in the Pilbara geophysical downhole logging may provide the necessary and sufficient information about rock formation properties, circumventing any need for real-time elemental analysis entirely. This study provides an example where petrophysical downhole data is automatically classified using a neuro-adaptive learning algorithm to differentiate between different rock types of iron ore deposits and for grade estimation. We exploit a rarely used ability in a spectral gamma-gamma density tool to gather both density and iron content with a single geophysical measurement. This inaccurate data is then put into a neural fuzzy inference system to classify the rock into different grades and waste lithologies, with success rates nearly equal to those from laboratory geochemistry. The steps outlined in this study may be used to produce a workflow for current logging tools and future logging-while-drilling technologies for real-time iron ore grade estimation and lithological classification.
机译:波动的商品价格已经反复将采矿产业放在压力下,以提高运营的生产力和效率。虽然新技术和分析程序可用于自动化工作流程,但目前的程序通常依赖于手动分析和解释。等级控制是一个这样的问题,其中实验室测定转弯时间不能击败铲子。我们提出对于皮尔巴拉地球物理井下测井中的铁矿石沉积物可以提供关于岩层性质的必要和充分信息,完全避免了对实时元素分析的任何需求。本研究提供了一种示例,其中使用神经自适应学习算法自动分类岩石物理井下数据,以区分不同岩石类型的铁矿石沉积物和等级估计。我们利用光谱伽马 - 伽马密度工具中很少使用的能力,以利用单一地球物理测量来收集密度和铁含量。然后将这种不准确的数据放入神经模糊推理系统中,将岩石分类为不同的等级和废物岩性,成功率几乎等于来自实验室地球化学的速度。本研究中概述的步骤可用于生产用于当前测井工具的工作流程和用于实时铁矿石级估计和岩性分类的未来伐木工具的工作流程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号