首页> 外文OA文献 >Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine
【2h】

Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine

机译:基于量子遗传算法和支持向量机的螺钉剩余寿命预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To predict the remaining life of ball screw, a screw remaining life prediction method based on quantum genetic algorithm (QGA) and support vector machine (SVM) is proposed. A screw accelerated test bench is introduced. Accelerometers are installed to monitor the performance degradation of ball screw. Combined with wavelet packet decomposition and isometric mapping (Isomap), the sensitive feature vectors are obtained and stored in database. Meanwhile, the sensitive feature vectors are randomly chosen from the database and constitute training samples and testing samples. Then the optimal kernel function parameter and penalty factor of SVM are searched with the method of QGA. Finally, the training samples are used to train optimized SVM while testing samples are adopted to test the prediction accuracy of the trained SVM so the screw remaining life prediction model can be got. The experiment results show that the screw remaining life prediction model could effectively predict screw remaining life.
机译:为了预测滚珠丝杠的剩余寿命,提出了一种基于量子遗传算法(QGA)和支持向量机(SVM)的螺杆剩余寿命预测方法。介绍螺钉加速测试台。安装加速度计以监测滚珠丝杠的性能下降。结合小波分组分解和等距映射(ISOMAP),获得敏感特征向量并存储在数据库中。同时,敏感特征向量从数据库中随机选择,构成训练样本和测试样本。然后使用QGA的方法搜索SVM的最佳核心函数参数和惩罚系数。最后,训练样本用于培训优化的SVM,同时采用测试样品来测试训练的SVM的预测精度,因此可以得到螺杆剩余寿命预测模型。实验结果表明,螺杆剩余寿命预测模型可以有效地预测螺杆剩余寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号