首页> 外文OA文献 >CT Image Segmentation Method of Liver Tumor Based on Artificial Intelligence Enabled Medical Imaging
【2h】

CT Image Segmentation Method of Liver Tumor Based on Artificial Intelligence Enabled Medical Imaging

机译:基于人工智能的肝肿瘤CT图像分割方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artificial intelligence (AI) has made various developments in the image segmentation techniques in the field of medical imaging. This article presents a liver tumor CT image segmentation method based on AI medical imaging-based technology. This study proposed an artificial intelligence-based K-means clustering (KMC) algorithm which is further compared with the region growing (RG) method. In this study, 120 patients with liver tumors in the Post Graduate Institute of Medical Education & Research Hospital, Chandigarh, India, were selected as the research objects, and they were classified according to liver function (Child–Pugh), with 58 cases in grade A and 62 cases in grade B. The experimentation indicates that liver tumor showed low density on plain CT scan, moderate enhancement in the arterial phase of the enhanced scan, and low-density filling defect in the involved blood vessel in the portal venous phase (PVP). It was observed that the CT examination is more sensitive to liver metastasis than hepatocellular carcinoma (P<0.05). The outcomes obtained depict the good deposition effect of lipiodol chemotherapy emulsion (LCTE) in the contrast group with rich blood type accounted for 53.14% and the patients with the poor blood type accounted for 25.73% showed poor deposition effect. The comparison with the state-of-the-art method reveals that the segmentation effect of the KMC algorithm is better than that of the conventional RG method.
机译:人工智能(AI)在医学成像领域的图像分割技术中提出了各种发展。本文介绍了基于AI医学成像技术的肝肿瘤CT图像分割方法。该研究提出了一种基于人工智能的K-means聚类(KMC)算法,其与该区域生长(RG)方法相比。在本研究中,120例肝脏肿瘤患者在岗位医学教育和研究医院,印度昌迪加尔,印度,被选为研究对象,并根据肝功能(儿童-PUGH)进行分类,58例B级和B级62例。实验表明,肝肿瘤在普通CT扫描中显示出低密度,增强扫描的动脉阶段的中度增强,并且在门静脉期的涉及血管中的低密度填充缺陷(PVP)。观察到CT检查对肝转移比肝细胞癌更敏感(P <0.05)。所获得的结果描绘了脂肪碘酸碘疗法乳液(LCTE)的良好沉积效果,富含血液型患者占53.14%,血液型患者占25.73%表现出沉积效果不良。与最先进的方法的比较揭示了KMC算法的分割效果优于传统RG方法的分割效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号