首页> 外文OA文献 >Accelerating Faceting Wide-Field Imaging Algorithm with FPGA for SKA Radio Telescope as a Vast Sensor Array
【2h】

Accelerating Faceting Wide-Field Imaging Algorithm with FPGA for SKA Radio Telescope as a Vast Sensor Array

机译:用FPGA加速俯瞰宽场成像算法,SKA无线电望远镜作为广大传感器阵列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The SKA (Square Kilometer Array) radio telescope will become the most sensitive telescope by correlating a huge number of antenna nodes to form a vast array of sensors in a region over one hundred kilometers. Faceting, the wide-field imaging algorithm, is a novel approach towards solving image construction from sensing data where earth surface curves cannot be ignored. However, the traditional processor of cloud computing, even if the most sophisticated supercomputer is used, cannot meet the extremely high computation performance requirement. In this paper, we propose the design and implementation of high-efficiency FPGA (Field Programmable Gate Array) -based hardware acceleration of the key algorithm, faceting in SKA by focusing on phase rotation and gridding, which are the most time-consuming phases in the faceting algorithm. Through the analysis of algorithm behavior and bottleneck, we design and optimize the memory architecture and computing logic of the FPGA-based accelerator. The simulation and tests on FPGA are done to confirm the acceleration result of our design and it is shown that the acceleration performance we achieved on phase rotation is 20× the result of the previous work. We then further designed and optimized an efficient microstructure of loop unrolling and pipeline for the gridding accelerator, and the designed system simulation was done to confirm the performance of our structure. The result shows that the acceleration ratio is 5.48 compared to the result tested on software in gridding parts. Hence, our approach enables efficient acceleration of the faceting algorithm on FPGAs with high performance to meet the computational constraints of SKA as a representative vast sensor array.
机译:SKA(平方千米阵列)无线电望远镜将通过关联大量的天线节点来成为最敏感的望远镜,以在一百公里的区域中形成大量传感器。面位,宽场成像算法是一种旨在从感测地球表面曲线无法忽略的数据求解图像结构的新方法。但是,传统的云计算处理器,即使使用最复杂的超级计算机,也不能满足极高的计算性能要求。在本文中,我们提出了基于关键算法的高效FPGA(现场可编程门阵列)的设计和实现,通过专注于相位旋转和网格来进行SKA中的刻面,这是最耗时的阶段刻面算法。通过分析算法行为和瓶颈,我们设计和优化基于FPGA的加速器的内存架构和计算逻辑。对FPGA的仿真和测试是为了确认我们设计的加速结果,并显示我们在相位旋转上实现的加速性能为20倍以前的工作结果。然后,我们进一步设计和优化了一种有效的环路展开和管道的微观结构,用于网格加速器,并进行设计的系统仿真以确认我们结构的性能。结果表明,与网格零件的软件上测试的结果相比,加速度为5.48。因此,我们的方法可以实现高性能的FPGA上的刻面算法的高度加速,以满足SKA作为代表性广泛传感器阵列的计算约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号