首页> 外文OA文献 >Evaluation of Direct Horizontal Irradiance in China Using a Physically-Based Model and Machine Learning Methods
【2h】

Evaluation of Direct Horizontal Irradiance in China Using a Physically-Based Model and Machine Learning Methods

机译:利用基于物理的模型和机器学习方法评估中国直接水平辐照度的评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate estimation of direct horizontal irradiance (DHI) is a prerequisite for the design and location of concentrated solar power thermal systems. Previous studies have shown that DHI observation stations are too sparsely distributed to meet requirements, as a result of the high construction and maintenance costs of observation platforms. Satellite retrieval and reanalysis have been widely used for estimating DHI, but their accuracy needs to be further improved. In addition, numerous modelling techniques have been used for this purpose worldwide. In this study, we apply five machine learning methods: back propagation neural networks (BP), general regression neural networks (GRNN), genetic algorithm (Genetic), M5 model tree (M5Tree), multivariate adaptive regression splines (MARS); and a physically based model, Yang’s hybrid model (YHM). Daily meteorological variables, including air temperature (T), relative humidity (RH), surface pressure (SP), and sunshine duration (SD) were obtained from 839 China Meteorological Administration (CMA) stations in different climatic zones across China and were used as data inputs for the six models. DHI observations at 16 CMA radiation stations were used to validate their accuracy. The results indicate that the capability of M5Tree was superior to BP, GRNN, Genetic, MARS and YHM, with the lowest values of daily root mean square (RMSE) of 1.989 MJ m−2day−1, and the highest correlation coefficient (R = 0.956), respectively. Then, monthly and annual mean DHI during 1960–2016 were calculated to reveal the spatiotemporal variation of DHI across China, using daily meteorological data based on the M5tree model. The results indicated a significantly decreasing trend with a rate of −0.019 MJ m−2during 1960–2016, and the monthly and annual DHI values of the Tibetan Plateau are the highest, while whereas the lowest values occur in the southeastern part of the Yunnan−Guizhou Plateau, the Sichuan Basin and most of the southern Yangtze River Basin. The possible causes for spatiotemporal variation of DHI across China were investigated by discussing cloud and aerosol loading.
机译:准确估计直接水平辐照度(DHI)是集中太阳能热系统的设计和位置的先决条件。以前的研究表明,由于观察平台的高建和维护成本,DHI观察站太稀疏地分配以满足要求。卫星检索和重新分析已被广泛用于估算DHI,但它们的准确性需要进一步改善。此外,在全球范围内使用了许多建模技术。在这项研究中,我们应用五种机器学习方法:背传播神经网络(BP),一般回归神经网络(GRNN),遗传算法(遗传),M5模型树(M5Tree),多变量自适应回归花键(MARS);和一个物理基础的模型,杨的混合模型(YHM)。每日气象变量,包括空气温度(t),相对湿度(RH),表面压力(SP)和阳光持续时间(SD),从中国的不同气候管理(CMA)站获得,并被用作六个模型的数据输入。在16个CMA辐射站的DHI观测用于验证其准确性。结果表明,M5Tree的能力优于BP,GRNN,遗传,火星和YHM,每日根均线(RMSE)的最低值为1.989 MJ M-2day-1,以及最高的相关系数(R = 0.956)分别。然后,在1960 - 2016年期间,每月和年度平均均值计算,以揭示跨国DHI的时空变化,利用基于M5Tree模型的日间气象数据。结果表明,1960-2016的速度显着降低了-0.019 MJ M-2,而藏高原的月度和年度DHI值最高,而最低值发生在云南东南部 - 贵州高原,四川盆地和大部分南部长江流域。通过讨论云和气溶胶荷载,研究了中国跨越中国的天空扑普拉特的可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号