首页> 外文OA文献 >Comparative Analysis of Multiple Linear Regression and Artificial Neural Network for Predicting Friction and Wear of Automotive Brake Pads Produced from Palm Kernel Shell
【2h】

Comparative Analysis of Multiple Linear Regression and Artificial Neural Network for Predicting Friction and Wear of Automotive Brake Pads Produced from Palm Kernel Shell

机译:多元线性回归和人工神经网络预测棕榈籽壳生产汽车制动垫摩擦磨损的比较分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, comparative analysis of multiple linear regression (MLR) and artificial neural network (ANN) for prediction of wear rate and coefficient of friction brake pad produced from palm kernel shell was carried out. The inputs parameters used for the two models generated using inertia dynamometer were the percentages of palm kernel shell, aluminium oxide, graphite, calcium carbonate, epoxy resin, interface temperature of the brake pad, and work done by brake application. Two model equations were developed using MLR model for predicting wear rate and coefficient of friction while the neural network architecture BR 7 [5-3] 2 was used to predict wear rate and coefficient of friction. The predicted wear rate and coefficient of friction by MLR model were compared with ANN model along with the measured values using statistical tools such as means square absolute error (MAE), root means square error (RMSE), and Nash-Scutcliffe efficiency (NSE). The results revealed that the MLR model outsmarts the ANN model with the values of MAE and RMSE reasonably low and NSE reasonably higher. The best MAE and RMSE values of 0.000 were observed at the three values of measured wear rates and coefficient of friction that matched with the predicted values using MLR compared to -0.0300 and 0.0740 for ANN model. However, the ANN model was equally found suitable for the prediction of wear rate and coefficient of friction of brake pads developed. The implication of these results is that the two models have the capabilities of being used simultaneously when estimating the wear and coefficient of friction of brake pads.
机译:在该研究中,进行了用于预测棕榈籽壳壳产生的磨损率和磨损制动垫的预测的多元线性回归(MLR)和人工神经网络(ANN)的比较分析。用于使用惯性测力计产生的两种模型的输入参数是棕榈仁壳,氧化铝,石墨,碳酸钙,环氧树脂,制动垫的界面温度的百分比,以及通过制动应用完成的工作。使用MLR模型开发了两个模型方程,用于预测磨损率和摩擦系数,而神经网络结构BR 7 [5-3] 2用于预测磨损率和摩擦系数。将MLR模型的预测磨损率和摩擦系数与ANN模型一起与使用统计工具的测量值进行比较,例如平方方向绝对误差(MAE),根部手段方误差(RMSE)和NASH-SCUTCLIFFE效率(NSE) 。结果表明,MLR模型与毛和RMSE的价值相当低,NSE合理更高的价值观。在测量的磨损率和使用MLR匹配的磨损速率和摩擦系数的三个值下观察到0.000的最佳MAE和RMSE值与ANN模型的-0.0300和0.0740相匹配。然而,ANN模型同样被发现适用于推动制动垫的磨损率和摩擦系数。这些结果的含义在于,两种模型在估计制动衬块的摩擦系数时具有同时使用的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号