首页> 外文OA文献 >Deep Learning for Deep Waters: An Expert-in-the-Loop Machine Learning Framework for Marine Sciences
【2h】

Deep Learning for Deep Waters: An Expert-in-the-Loop Machine Learning Framework for Marine Sciences

机译:深水深处深入学习:用于海洋科学的循环专家学习框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Driven by the unprecedented availability of data, machine learning has become a pervasive and transformative technology across industry and science. Its importance to marine science has been codified as one goal of the UN Ocean Decade. While increasing amounts of, for example, acoustic marine data are collected for research and monitoring purposes, and machine learning methods can achieve automatic processing and analysis of acoustic data, they require large training datasets annotated or labelled by experts. Consequently, addressing the relative scarcity of labelled data is, besides increasing data analysis and processing capacities, one of the main thrust areas. One approach to address label scarcity is the expert-in-the-loop approach which allows analysis of limited and unbalanced data efficiently. Its advantages are demonstrated with our novel deep learning-based expert-in-the-loop framework for automatic detection of turbulent wake signatures in echo sounder data. Using machine learning algorithms, such as the one presented in this study, greatly increases the capacity to analyse large amounts of acoustic data. It would be a first step in realising the full potential of the increasing amount of acoustic data in marine sciences.
机译:通过前所未有的数据推动,机器学习已成为行业和科学的普遍性和变革的技术。它对海洋科学的重要性被编制为联合国海洋十年的一个目标。虽然增加了数量的数量,但是收集了用于研究和监测目的的声学海洋数据,而机器学习方法可以实现自动处理和分析声学数据,它们需要由专家注释或标记的大型训练数据集。因此,除了增加数据分析和处理能力之外,还可以解决标记数据的相对稀缺性,其中一个主推力区域之一。解决标签稀缺的一种方法是循环专家方法,允许有效地分析有限和不平衡数据。我们的新型深度学习的专家内框架展示了其优势,用于在回声发声器数据中自动检测湍流尾标签。使用机器学习算法,例如本研究中提供的机器,大大增加了分析大量声学数据的能力。这将是实现海洋科学中越来越多的声学数据的充分潜力的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号