首页> 外文OA文献 >Method of Spare Parts Prediction Models Evaluation Based on Grey Comprehensive Correlation Degree and Association Rules Mining: A Case Study in Aviation
【2h】

Method of Spare Parts Prediction Models Evaluation Based on Grey Comprehensive Correlation Degree and Association Rules Mining: A Case Study in Aviation

机译:基于灰色综合相关学位与关联规则挖掘的备件预测模型评估方法:航空案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Probability of spare parts sufficiency is crucial in the process of the normal operation of businesses, especially for the airline company. However, higher support sufficiency could inevitably lead to the increase of inventory cost of spare parts and restrict a company’s efficiency. Therefore, it is important for businesses to reduce material cost on the premise of normal operation in order to accurately predict spare parts requirements based on reasonable models. The purpose of this paper is to solve problems with the evaluation of spare parts prediction models and to improve efficiency of company. Firstly, this paper summarizes a series of prediction models of spare parts requirements and applies the grey comprehensive correlation degree to rank the models. Secondly, the method of association rules mining is used to discover the association relationships between the types of spare parts and the prediction models. Finally, a case study in aviation is given to demonstrate the feasibility of the methodology, and optimal prediction models are recommended for aircraft spare parts. In accordance with the association relationships, the applicable prediction model can be provided in terms of different types of spare parts. This model will greatly enhance the work efficiency of spare parts prediction and improve the prediction tasks for the aircraft companies.
机译:备件充足的概率在业务正常运营过程中至关重要,特别是为航空公司公司。然而,较高的支持充足可能不可避免地导致库存成本的库存成本增加,并限制了公司的效率。因此,对于企业来说,在正常运行的前提下减少材料成本是重要的,以便准确地预测基于合理模型的备件要求。本文的目的是解决备件预测模型评估的问题,提高公司效率。首先,本文总结了一系列备件要求的预测模型,并应用灰色综合相关程度来对模型进行排名。其次,用于关联规则挖掘的方法用于发现备件类型和预测模型之间的关联关系。最后,给出了航空的案例研究,以证明方法的可行性,建议用于飞机备件的最佳预测模型。根据关联关系,可以在不同类型的备件方面提供适用的预测模型。该模型将大大提高备件预测的工作效率,提高飞机公司的预测任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号