首页> 外文OA文献 >Adaptive Neuro-Fuzzy Inference System (Anfis) to Predict Ci Engine Parameters Fueled with Nano-Particles Additive to Diesel Fuel
【2h】

Adaptive Neuro-Fuzzy Inference System (Anfis) to Predict Ci Engine Parameters Fueled with Nano-Particles Additive to Diesel Fuel

机译:自适应神经模糊推理系统(Anfis)预测由柴油中添加的纳米颗粒为燃料的Ci发动机参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nano-structure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
机译:本文研究了使用自适应神经模糊推理系统(ANFIS)来预测使用纳米柴油混合燃料的柴油发动机的性能参数和废气排放。为了预测发动机参数,将整个实验数据随机分为训练和测试数据。对于ANFIS建模,高斯曲线隶属度函数(gaussmf)和200个训练时期(迭代)被发现是训练过程的最佳选择。结果表明,ANFIS能够预测柴油发动机的性能和排放。在实验步骤中,制备了具有纳米结构的碳纳米管(CNT)(40、80和120 ppm)和纳米银颗粒(40、80和120 ppm),并将其作为添加剂添加到柴油中。这些新的混合燃料为六缸四冲程柴油发动机提供了燃料,并以不同的发动机转速运行。实验测试结果表明,在柴油中添加纳米颗粒会增加柴油机的功率和扭矩输出。对于纳米柴油,发现与净柴油相比,制动器的单位燃料消耗量(bsfc)降低了。结果证明,随着柴油中纳米颗粒浓度(从40 ppm到120 ppm)的增加,CO2排放量增加。与纯柴油相比,具有纳米颗粒的柴油中的CO排放量显着降低。银纳米柴油混合燃料的UHC排放降低,而含CNT纳米颗粒的燃料的UHC排放则增加。与UHC排放相比,NOx排放的趋势相反。通过向混合燃料中添加纳米颗粒,与净柴油相比,NOx有所增加。测试表明,银和碳纳米管纳米颗粒可以用作柴油燃料的添加剂,以改善燃料的燃烧并显着减少废气排放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号