首页> 外文OA文献 >A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
【2h】

A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

机译:用于人为识别的模块化粒状神经网络灰狼优化器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.
机译:提出了一种具有粒状方法的灰狼优化器,具有粒状方法的模块化神经网络(MNN)。该方法的数据和模块化神经网络架构的数据和设计的最佳造粒,以实现人类识别,并证明其耳朵,虹膜和面部生物识别措施的有效性基准数据库用于对其他作品进行测试和比较。模块化粒状神经网络(MGNN)的设计包括找到其架构的最佳参数;这些参数是分区的数量,训练阶段的数据百分比,学习算法,目标误差,隐藏层的数量以及它们的神经元数。如今,进化计算区域内有各种各样的方法和新技术,这些方法和技术已经有助于找到解决问题或模型的最佳解决方案,并且BioinSpired算法是该区域的一部分。在这项工作中,提出了一种灰狼优化器,用于设计模块化粒状神经网络,并将结果与​​遗传算法和萤火虫算法进行比较,以便在应用于人类识别时提供更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号