首页> 外文OA文献 >Hybrid intelligent methods for parameter identification and load frequency control in power system
【2h】

Hybrid intelligent methods for parameter identification and load frequency control in power system

机译:电力系统参数辨识与负载频率控制的混合智能方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The accuracy of the parameter identification of power system model and efficiency of frequency control are part of the challenging work in power system operation and control area. Whereas, the complexity and high non-linearty of the power system model have led to the continuing research for improvement that still extensively active, especially for load frequency control (LFC). Generally, LFC is responsible to maintain the zero steady-state errors in the frequency changing and restoring the natural frequency to its normal position. Many methods have been proposed and implemented in identification of power system and LFC, however, they may not be appropriate. For example, the classical methods for parameter identification (LSE and MLE), the classical methods for LFC (PI, PD and PID) and the intelligent methods (fuzzy logic, neural network, genetic algorithm, and PSO). Thus, motivated from the topics, this Thesis is brought to present the improvement of the parameter identification of power system model and the response of the LFC in power system. The Thesis is divided into two parts in accordance to the topic. Where, in the first part, the coherent identification algorithm for single and multi-area power systems with disturbances is proposed. A new method from the improvement of Particle Swarm Optimization (PSO) is developed in order to find the best global optimal value. Meanwhile, part two presents three developed control methods for FLC from the improvement of fuzzy control (named as scaled fuzzy using PSO, parallel conventional PI/PD with Scaled Fuzzy PI/PD and Mirror Fuzzy controller) by adapting the utilization of PSO to optimize the scaled gain of fuzzy controllers. These proposed control methods in LFC will be examined and verified in two and four areas power system. The outcomes of the proposed parameters identification and LFC control methods are presented the results through simulation using Matlab by making a comparison on the frequency transient response. Various analyses are shown and the discussions on the results are done appropriately. Lastly, the Thesis is given the concluding remarks and the contributions which can be specified into two, a modification of PSO for parameters identification named as PSO segmentation and a new fuzzy control named as a Mirror Fuzzy controller for LFC
机译:电力系统模型参数辨识的准确性和频率控制的效率是电力系统运行和控制领域挑战性工作的一部分。鉴于电力系统模型的复杂性和高非线性度,导致对改进的持续研究仍在广泛开展,特别是对于负载频率控制(LFC)。通常,LFC负责在频率变化中保持零稳态误差,并将固有频率恢复到其正常位置。已经提出并实施了许多方法来识别电力系统和LFC,但是它们可能不合适。例如,用于参数识别的经典方法(LSE和MLE),用于LFC的经典方法(PI,PD和PID)和智能方法(模糊逻辑,神经网络,遗传算法和PSO)。因此,本课题以课题为出发点,提出了电力系统模型参数辨识和电力系统中LFC响应的改进方法。论文根据主题分为两个部分。在第一部分中,提出了具有干扰的单区域和多区域电力系统的相干识别算法。为了找到最佳全局最优值,从粒子群优化(PSO)的改进中开发了一种新方法。同时,第二部分通过适应性地利用PSO来优化模糊控制,从模糊控制的改进(称为使用PSO的缩放模糊,具有缩放模糊PI / PD的并行常规PI / PD和镜像模糊控制器的改进)提出了三种已开发的FLC控制方法。模糊控制器的比例增益。 LFC中建议的这些控制方法将在两个和四个区域的电力系统中进行检查和验证。通过对Matlab的频率瞬态响应进行比较,通过使用Matlab进行仿真,提出了建议的参数识别和LFC控制方法的结果。显示了各种分析,并对结果进行了适当的讨论。最后,给出了本文的结论和贡献,可以将其分为两部分:对用于参数识别的PSO的修改,称为PSO分段;对LFC的新的模糊控制,称为Mirror Fuzzy控制器。

著录项

  • 作者

    Aqeel Sakhy Jaber;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号