首页> 外文OA文献 >A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests
【2h】

A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests

机译:一种基于投票排名随机森林的新型肝细胞癌图像分类方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposed a novel voting ranking random forests (VRRF) method for solving hepatocellular carcinoma (HCC) image classification problem. Firstly, in preprocessing stage, this paper used bilateral filtering for hematoxylin-eosin (HE) pathological images. Next, this paper segmented the bilateral filtering processed image and got three different kinds of images, which include single binary cell image, single minimum exterior rectangle cell image, and single cell image with a size of n⁎n. After that, this paper defined atypia features which include auxiliary circularity, amendment circularity, and cell symmetry. Besides, this paper extracted some shape features, fractal dimension features, and several gray features like Local Binary Patterns (LBP) feature, Gray Level Cooccurrence Matrix (GLCM) feature, and Tamura features. Finally, this paper proposed a HCC image classification model based on random forests and further optimized the model by voting ranking method. The experiment results showed that the proposed features combined with VRRF method have a good performance in HCC image classification problem.
机译:本文提出了一种新型投票排名随机森林(VRRF)方法,用于溶解肝细胞癌(HCC)图像分类问题。首先,在预处理阶段,本文用来用于苏木精 - 曙红(HE)病理图像的双侧过滤。接下来,本文分段为双边滤波处理图像,并获得了三种不同种类的图像,其包括单个二进制单元图像,单个最小外部矩形单元图像和具有N⁎N的尺寸的单个单元格图像。之后,本文定义了含有辅助圆形度,修正圆形和细胞对称性的非典型特征。此外,本文提取了一些形状特征,分形尺寸特征和几个灰度特征,如本地二进制模式(LBP)特征,灰度Cooccurrence矩阵(GLCM)功能和Tamura功能。最后,本文提出了一种基于随机林的HCC图像分类模型,并通过投票排名方法进一步优化模型。实验结果表明,所提出的特征与VRRF方法相结合,具有良好的HCC图像分类问题性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号