首页> 外文OA文献 >Controller performance of P,PI and neral network control in vinyl acetate monomer process.
【2h】

Controller performance of P,PI and neral network control in vinyl acetate monomer process.

机译:乙酸乙烯酯单体工艺中P,PI的控制器性能和神经网络控制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research is about investigating the controller performance between P, PI and Neural Network control in Vinyl Acetate Monomer (VAC) Process. The manufacturing process is about vapor-phase reaction converting ethylene (C2H4), oxygen (O2) and acetic acid (HAc) into vinyl acetate (VAc) with water (H2O) and carbon dioxide (CO2) as byproducts. The data from the process are successfully generated and the simulation of the dynamic response is done with further analysis of P, PI control and Neural Network control. The study is focusing on the column section process as the clear view of the control performance is observed. The Proportional (P) and Proportional Integral (PI) control are type of controller that used in the process. The Neural Network control then is a control mechanism that has the similar system of human neurons for processing information data. It consists of network of neurons that have weight in each network and built generally in layers. As the analysis result of P and PI control showed some unsatisfying results, Neural Network Control is then developed to see the changes. In Neural Network control, the data has been trained and validate to get the better response before applied again to the process to see the improvement. At the end, Neural Network has visualized the better control performance as the unsatisfying responses of P and PI control have been improvised.
机译:这项研究是关于研究醋酸乙烯酯单体(VAC)过程中P,PI和神经网络控制之间的控制器性能。制造过程是关于气相反应,将水(H2O)和二氧化碳(CO2)副产物乙烯(C2H4),氧气(O2)和乙酸(HAc)转化为乙酸乙烯酯(VAc)。通过进一步分析P,PI控制和神经网络控制,成功生成了来自过程的数据,并完成了动态响应的仿真。由于观察到了对控制性能的清晰了解,因此研究着重于柱截面过程。比例(P)和比例积分(PI)控件是过程中使用的控制器类型。然后,神经网络控件是一种控制机制,具有类似于人类神经元的系统,用于处理信息数据。它由神经元网络组成,该神经元网络在每个网络中具有权重,并且通常分层构建。由于P和PI控制的分析结果显示出不令人满意的结果,因此开发了神经网络控制来观察变化。在神经网络控制中,对数据进行了训练和验证,以使其获得更好的响应,然后再将其应用于流程以查看改进。最后,由于改善了对P和PI控制的不满意响应,因此神经网络可视化了更好的控制性能。

著录项

  • 作者

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号