首页> 外文OA文献 >Implementing PCA Based on Fault Detection System Based on Selected Important Variables for Continuous Process
【2h】

Implementing PCA Based on Fault Detection System Based on Selected Important Variables for Continuous Process

机译:基于连续过程重要变量的故障检测系统实现PCA

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multivariate Statistical Process Control (MSPC) is known generally as an upgraded technique, from which, it was emerged as a result of reformation in conventional Statistical Process Control (SPC) method where MSPC technique has been widely used for fault detection and diagnosis. Currently, contribution plots are used in MSPC method as basic tools for fault diagnosis. This plot does not exactly diagnose the fault but it just provides greater insight into possible causes and thereby narrow down the search. Therefore, this research is conducted to introduce a new approach and method for detecting and diagnosing fault via correlation technique. The correlation coefficient is determined using multivariate analysis techniques that could use less number of newly formed variables to represent the original data variations without losing significant information, namely Principal Component Analysis (PCA). In order to solve these problems, the objective of this research is to develop new approaches, which can improve the performance of the present conventional MSPC methods. The new approaches have been developed, the Outline Analysis Approach for examining the distribution of Principal Component Analysis (PCA) score. The result from the conventional method and ne approach were compared based on their accuracy and sensitivity. Based on the results of the study, the new approaches generally performed better compared to the conventional approaches.
机译:多元统计过程控制(MSPC)通常被认为是一种升级的技术,它源于对传统统计过程控制(SPC)方法的改造,其中MSPC技术已广泛用于故障检测和诊断。目前,贡献图已在MSPC方法中用作故障诊断的基本工具。该图不能完全诊断出故障,而只是提供了对可能原因的更深入的了解,从而缩小了搜索范围。因此,本研究旨在介绍一种通过相关技术检测和诊断故障的新方法和方法。相关系数是使用多元分析技术确定的,该技术可以使用较少数量的新形成的变量来表示原始数据变化而不会丢失大量信息,即主成分分析(PCA)。为了解决这些问题,本研究的目的是开发新的方法,其可以改善当前常规MSPC方法的性能。已经开发了新的方法,即“轮廓分析方法”,用于检查主成分分析(PCA)分数的分布。根据传统方法和ne方法的准确性和敏感性,对它们的结果进行了比较。根据研究结果,新方法通常比常规方法表现更好。

著录项

  • 作者

    Mohd Huzaifah Hamzah;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号