首页> 外文OA文献 >Importance of Watermark Lossless Compression in Digital Medical Image Watermarking
【2h】

Importance of Watermark Lossless Compression in Digital Medical Image Watermarking

机译:水印无损压缩在数字医学图像水印中的重要性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large size data requires more storage space, communication time, communication bandwidth and degrades host imageudquality when it is embedded into it as watermark. Lossless compression reduces data size better than lossless one but with permanent loss of important part of data. Data lossless compression reduces data size contrast to lossy one without any data loss. Medical image data is very sensitive and needs lossless compression otherwise it will result in erroneous input for the health recovery process. This paper focuses on Ultrasound medical image region of interest(ROI) lossless compression as watermark using different techniques; PNG, GIF, JPG, JPEG2000 and Lempel Ziv Welsh (LZW). LZW technique was found 86% better than other tabulated techniques. Compression ratio and more bytes reduction were the parameters considered for the selection of better compression technique. In this work LZW has been used successfully for watermark lossless compression to watermark medical images in teleradiology to ensure less payload encapsulation into images to preserveudtheir perceptual and diagnostic qualities unchanged. On the other side in teleradiology the extracted lossless decompressed watermarks ensure the images authentication and their lossless recoveries in case of any tamper occurrences. ud
机译:大型数据需要更多的存储空间,通信时间,通信带宽,并且在将其作为水印嵌入到主机图像中时会降低图像质量。无损压缩比无损压缩更好地减少了数据大小,但是永久丢失了重要数据部分。数据无损压缩与无损压缩相比减少了数据大小,而没有任何数据丢失。医学图像数据非常敏感,需要进行无损压缩,否则将导致对健康恢复过程的错误输入。本文着重研究了超声医学图像感兴趣区域(ROI)无损压缩作为水印的各种技术。 PNG,GIF,JPG,JPEG2000和Lempel Ziv威尔士(LZW)。发现LZW技术比其他列表技术好86%。压缩率和更多的字节减少是选择更好的压缩技术所考虑的参数。在这项工作中,LZW已成功用于水印无损压缩,以在放射放射学中为医学图像加水印,以确保更少的有效载荷封装到图像中,以保持其感知和诊断质量不变。在远程放射学的另一面,提取的无损解压水印可确保图像认证以及万一发生篡改时其无损恢复。 ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号