首页> 外文OA文献 >An ELM Based Online Soft Sensing Approach for Alumina Concentration Detection
【2h】

An ELM Based Online Soft Sensing Approach for Alumina Concentration Detection

机译:基于ELM的氧化铝浓度检测的在线软感测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The concentration of alumina in the electrolyte is of great significance during the production of aluminum; it may affect the stability of aluminum reduction cell and the current efficiency. However, the concentration of alumina is hard to be detected online because of the special circumstance in the aluminum reduction cell. At present, there is lack of fast and accurate soft sensing methods for alumina concentration and existing methods can not meet the needs for online measurement. In this paper, a novel soft sensing method based on a modified extreme learning machine (MELM) for online measurement of the alumina concentration is proposed. The modified ELM algorithm is based on the enhanced random search which is called incremental extreme learning machine in some references. It randomly chooses the input weights and analytically determines the output weights without manual intervention. The simulation results show that the approach can give more accurate estimations of alumina concentration with faster learning speed compared with other methods such as BP and SVM.
机译:在铝的生产过程中,电解质中氧化铝的浓度具有重要意义;它可能影响铝减少电池的稳定性和电流效率。然而,由于铝还原细胞中的特殊情况,难以在线检测到氧化铝的浓度。目前,含有快速和准确的软感测方法对于氧化铝浓度,现有方法不能满足在线测量的需求。本文提出了一种基于改进的极端学习机(MelM)的新型软感测方法,用于在线测量氧化铝浓度。修改的ELM算法基于增强的随机搜索,在某些引用中称为增量极限学习机。它随机选择输入权重,并在没有手动干预的情况下进行分析确定输出权重。仿真结果表明,与其他方法(如BP和SVM)相比,该方法可以更准确地估计氧化铝浓度,与其他方法相比,更快的学习速度。

著录项

  • 作者

    Sen Zhang; Xi Chen; Yixin Yin;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号