首页> 外文OA文献 >Implementing PCA-Based Fault Detection System Based on Selected Imported Variables for Continuous-Based Process
【2h】

Implementing PCA-Based Fault Detection System Based on Selected Imported Variables for Continuous-Based Process

机译:基于选择的导入变量的基于PCA的故障检测系统的连续过程实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, the production based on chemical process was rapidly expanding either domestically or internationally. To produce the maximum amount of consistently high quality products as per requested and specified by the customers, the whole process must be considering included fault detection. This is to ensure that product quality is achieved and at the same time to ensure that the quality variables are operated under the normal operation. There were several methods that commonly used to detect the fault in process monitoring such as using SPC or MSPC. However because of the MSPC can operated with multivariable continuous processes with collinearities among process variables, this technique was used widely in industry. In MSPC have a few methods that were proposed to improve the fault detection such as PCA, PARAFAC, multidimensional scaling technique, partial least squares, KPCA, NLPCA, MPCA and others. Here, in this thesis was to proposed new technique which was by implementing PCA-based fault detection system based on selected imported variables for continuous-based process. This technique was selected depends on the highest number of magnitude of correlation of variables using Matlab Software. The result in this thesis was the fault can be detected using only selected important variables in the process.
机译:如今,基于化学过程的生产在国内或国际上都在迅速扩大。为了根据客户的要求和要求生产最大数量的始终如一的高质量产品,整个过程必须考虑包括故障检测在内。这是为了确保达到产品质量,同时确保质量变量在正常操作下运行。在过程监视中通常有几种方法可以检测到故障,例如使用SPC或MSPC。但是,由于MSPC可以在过程变量之间具有共线性的情况下使用多变量连续过程进行操作,因此该技术已在工业中得到广泛使用。在MSPC中,提出了一些改进故障检测的方法,例如PCA,PARAFAC,多维缩放技术,偏最小二乘,KPCA,NLPCA,MPCA等。在此,本文提出了一种新技术,该技术通过基于连续过程的选定导入变量实现基于PCA的故障检测系统。选择这种技术取决于使用Matlab软件的变量相关性的最大数量。本文的结果是,仅可以使用过程中选择的重要变量来检测故障。

著录项

  • 作者

    Siti Nur Liyana Ahamd;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号