首页> 外文OA文献 >Automatic Optic Disc Abnormality Detection in Fundus Images: A Deep Learning Approach
【2h】

Automatic Optic Disc Abnormality Detection in Fundus Images: A Deep Learning Approach

机译:眼底图像中的自动光盘异常检测:深度学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optic disc (OD) is a key structure in retinal images. It serves as an indicator to detect various diseases such as glaucoma and changes related to new vessel formation on the OD in diabetic retinopathy (DR) or retinal vein occlusion. OD is also essential to locate structures such as the macula and the main vascular arcade. Most existing methods for OD localization are rule-based, either exploiting the OD appearance proper- ties or the spatial relationship between the OD and the main vascular arcade. The detection of OD abnormalities has been performed through the detection of lesions such as hemorrhaeges or through measuring cup to disc ratio. Thus these methods result in complex and in exible im- age analysis algorithms limiting their applicability to large image sets obtained either in epidemiological studies or in screening for retinal or optic nerve diseases. In this paper, we propose an end-to-end supervised model for OD abnormality detection. The most informative features of the OD are learned directly from retinal images and are adapted to the dataset at hand. Our experimental results validated the effectiveness of this current approach and showed its potential application.
机译:光盘(OD)是视网膜图像中的关键结构。它可作为检测各种疾病的指标,例如青光眼以及与糖尿病性视网膜病变(DR)或视网膜静脉阻塞相关的OD上新血管形成相关的变化。 OD对于定位诸如黄斑和主要血管拱廊之类的结构也是必不可少的。现有的大多数OD定位方法都是基于规则的,可以利用OD外观属性或OD与主要血管拱廊之间的空间关系。 OD异常的检测是通过检测出血(例如出血)或量杯/盘比来进行的。因此,这些方法导致了复杂且可应用的图像分析算法,从而限制了它们在流行病学研究或筛查视网膜或视神经疾病中获得的大图像集的适用性。在本文中,我们提出了一种用于OD异常检测的端到端监督模型。 OD的最有用的功能是直接从视网膜图像中获悉的,并适合于手头的数据集。我们的实验结果验证了这种当前方法的有效性,并显示了其潜在的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号