首页> 外文OA文献 >Synthesis, characterization and catalytic performance of Cu/ZnO/SBA-15 for hydrogen of carbon dioxide to methanol
【2h】

Synthesis, characterization and catalytic performance of Cu/ZnO/SBA-15 for hydrogen of carbon dioxide to methanol

机译:Cu / ZnO / SBA-15的合成,表征及催化二氧化碳制氢制甲醇的性能

摘要

Carbon dioxide (CO2) is the primary greenhouse gas that causes global warming. The conversion of CO 2 into methanol (CH3 0H) is an alternative to the costly geological and oceanic CO 2 sequestration. CH30H is an important feedstock in the chemical industries and known as an alternative fuel. The catalytic CO2 conversion and CH30H space time yield (STY) is however reported to be considerably low. It is therefore of importance to develop novel catalysts with improved properties for catalytic growth. Santa Barbara Amorphous 15 (SBA-1 5) with highly ordered hexagonal structure, uniform pore diameter ('-'5.5 nm) and particle morphology, thicker wall-thickness (3.0 to 5.0 nm), high surface area (585.20 M2 /g) and high thermal stability was successfully synthesized by the conventional method without hydrothermal aging process. The synthesized SBA-15udwas used as catalyst support. A number of monometallic and bimetallic catalyst of copper (Cu) or/and zinc oxide (ZnO) supported on SBA-15 were synthesized by simple reflux method. The physicochemical properties of the as-prepared catalysts were investigated by X-ray diffraction (XRD), nitrogen adsorption, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and hydrogen-temperature programmed reduction (H 2-TPR). The best amount of 5 wt.% Cu and 15 wt.% ZnO supported on SBA-1 5 designated as SCull 5ZnO/SBA-1 5 was found to effectively catalyze the hydrogenation of CO 2 to CH3 011. The best process conditions for CO2 hydrogenation to CH30H over 5Cu/15ZnO/SBA-15 were found to be the reaction pressure of 4.0 MPa, the reaction temperature of 250 °C, and the reactants total gas hour space velocity (GHSV) of 2400 h' that resulted to 22.9% and 11796.8 mmol kgcat' h' of CO2 conversion and CH30H STY, respectively. Audreaction mechanism of CH 30H synthesis route and reverse water gas shift (RWGS) reaction on CulZnO/SBA-15 was proposed, based on the experimental results obtained in this study. The calculated activation energies of CH 30H synthesis and carbon monoxide (CO) formation were 35.29 kJ/mol and 68.02 kJ/mol, respectively. The CO2 conversion and CH30H STY were stable during 24 h of reaction on stream and no obvious deactivation was observed. The higher catalytic activity obtained over the novel SCu/l 5ZnO/SBA-15 catalyst can be correlated to the high dispersion of Cu and ZnO on the SBA-15 surfaces, creating greater amount of Cu-ZnO active sites, which are necessary for CH30H synthesis route. The deposited ZnO migrationon the Cu surfaces was found to deactivate the RWGS reaction to form CO; and therefore increasing the CH30H selectivity.ud
机译:二氧化碳(CO2)是导致全球变暖的主要温室气体。将CO 2转化为甲醇(CH 3 0H)是昂贵的地质和海洋CO 2隔离的替代方法。 CH30H是化学工业中的重要原料,被称为替代燃料。然而,据报道,催化CO2转化率和CH30H时空产率(STY)相当低。因此,重要的是开发具有改进的催化生长性能的新型催化剂。圣巴巴拉无定形15(SBA-1 5)具有高度有序的六边形结构,均匀的孔径('-'5.5 nm)和颗粒形态,较厚的壁厚(3.0至5.0 nm),高表面积(585.20 M2 / g)采用常规方法无需水热老化过程,即可成功合成高热稳定性。合成的SBA-15 ud用作催化剂载体。采用简单回流法合成了负载在SBA-15上的铜(Cu)或/和氧化锌(ZnO)的单金属和双金属催化剂。通过X射线衍射(XRD),氮吸附,热重分析(TGA),扫描电子显微镜(SEM),能量色散X射线分析(EDX),透射电子显微镜( TEM)和程序设定的氢气温度还原(H 2-TPR)。发现负载在SBA-1 5上的最佳量的5 wt%的Cu和15 wt%的ZnO被指定为SCull 5ZnO / SBA-1 5可以有效催化CO 2氢化为CH3011。CO2的最佳工艺条件发现在5Cu / 15ZnO / SBA-15上加氢生成CH30H的反应压力为4.0 MPa,反应温度为250°C,反应物总气时空速(GHSV)为2400 h',结果为22.9%和11796.8 mmol kgcat'h'的CO2转化率和CH30H STY。基于本研究获得的实验结果,提出了CH 30H合成路线的反应机理和CulZnO / SBA-15的反向水煤气变换(RWGS)反应。 CH 30H合成和一氧化碳(CO)形成的活化能计算值分别为35.29 kJ / mol和68.02 kJ / mol。在进行反应的24小时内,CO2转化率和CH30H STY稳定,没有观察到明显的失活。在新型SCu / l 5ZnO / SBA-15催化剂上获得的更高的催化活性可以与Cu和ZnO在SBA-15表面上的高分散性相关,产生大量的Cu-ZnO活性位点,这对于CH30H是必需的合成路线。发现在铜表面上沉积的ZnO迁移使RWGS反应失活以形成CO。因此提高了CH30H的选择性。 ud

著录项

  • 作者

    Nurul Ain Mohamed Razali;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号