首页> 外文OA文献 >Comparative Performance Analysis of Bat Algorithm and Bacterial Foraging Optimization Algorithm using Standard Benchmark Functions
【2h】

Comparative Performance Analysis of Bat Algorithm and Bacterial Foraging Optimization Algorithm using Standard Benchmark Functions

机译:基于标准基准函数的Bat算法和细菌觅食优化算法的比较性能分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optimization problem relates to finding the best solution from all feasible solutions. Over the last 30 years, many meta-heuristic algorithms have been developed in the literature including that of Simulated Annealing (SA), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Harmony Search Algorithm (HS) to name a few. In order to help engineers make a sound decision on the selection amongst the best meta-heuristic algorithms for the problem at hand, there is a need to assess the performance of each algorithm against common case studies. Owing to the fact that they are new and much of their relative performance are still unknown (as compared to other established meta-heuristic algorithms), Bacterial Foraging Optimization Algorithm (BFO) and Bat Algorithm (BA) have been adopted for comparison using the 12 selected benchmark functions. In order to ensure fair comparison, both BFO and BA are implemented using the same data structure and the same language and running in the same platform (i.e. Microsoft Visual C# with .Net Framework 4.5). We found that BFO gives more accurate solution as compared to BA (with the same number of iterations). However, BA exhibits faster convergence rate
机译:优化问题涉及从所有可行的解决方案中找到最佳解决方案。在过去的30年中,文献中已经开发了许多元启发式算法,包括模拟退火(SA),遗传算法(GA),蚁群优化(ACO),粒子群优化(PSO),和谐搜索算法( HS)等等。为了帮助工程师在针对当前问题的最佳元启发式算法中进行选择,做出明智的决策,有必要针对常见案例研究评估每种算法的性能。由于它们是新奇的,而且相对性能仍然未知(与其他已建立的元启发式算法相比),因此使用细菌觅食优化算法(BFO)和蝙蝠算法(BA)来比较这12种选定的基准功能。为了确保公平比较,BFO和BA均使用相同的数据结构和相同的语言并在相同的平台上运行(即带有.Net Framework 4.5的Microsoft Visual C#)来实现。我们发现,与BA(具有相同的迭代次数)相比,BFO提供了更准确的解决方案。但是,BA显示出更快的收敛速度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号