首页> 外文OA文献 >Global Optimum Distance Evaluated Particle Swarm Optimization for Combinatorial Optimization Problem
【2h】

Global Optimum Distance Evaluated Particle Swarm Optimization for Combinatorial Optimization Problem

机译:组合优化问题的全局最优距离估计粒子群算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Based on the mechanism of Particle Swarm Optimization (PSO) measurement process, every particle estimates the global minimum/maximum. Particles communicate among them to update and improve the solution during the search process. However, the PSO is only capable to solve continuous numerical optimization problem. In order to solve discrete optimization problems, a new global optimum distance evaluated approach is proposed and combined with PSO. A set of traveling salesman problems (TSP) are used to evaluate the performance of the proposed global optimum distance evaluated PSO (GO-DEPSO). Based on the analysis of experimental results, we found that the proposed DEPSO is capable to solve discrete optimization problems using TSP.
机译:基于粒子群优化(PSO)测量过程的机制,每个粒子都会估计全局最小值/最大值。粒子在它们之间进行通信以在搜索过程中更新和改进解决方案。但是,PSO仅能够解决连续的数值优化问题。为了解决离散优化问题,提出了一种新的全局最优距离评估方法,并与PSO相结合。使用一组旅行商问题(TSP)来评估建议的全球最佳距离评估PSO(GO-DEPSO)的性能。通过对实验结果的分析,我们发现提出的DEPSO能够使用TSP解决离散优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号