首页> 外文OA文献 >Canopy Roughness: A New Phenotypic Trait to Estimate Aboveground Biomass from Unmanned Aerial System
【2h】

Canopy Roughness: A New Phenotypic Trait to Estimate Aboveground Biomass from Unmanned Aerial System

机译:冠层粗糙度:一种新的表型特性,以估计无人机空中系统的地上生物量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cost-effective phenotyping methods are urgently needed to advance crop genetics in order to meet the food, fuel, and fiber demands of the coming decades. Concretely, characterizing plot level traits in fields is of particular interest. Recent developments in high-resolution imaging sensors for UAS (unmanned aerial systems) focused on collecting detailed phenotypic measurements are a potential solution. We introduce canopy roughness as a new plant plot-level trait. We tested its usability with soybean by optical data collected from UAS to estimate biomass. We validate canopy roughness on a panel of 108 soybean [Glycine max (L.) Merr.] recombinant inbred lines in a multienvironment trial during the R2 growth stage. A senseFly eBee UAS platform obtained aerial images with a senseFly S.O.D.A. compact digital camera. Using a structure from motion (SfM) technique, we reconstructed 3D point clouds of the soybean experiment. A novel pipeline for feature extraction was developed to compute canopy roughness from point clouds. We used regression analysis to correlate canopy roughness with field-measured aboveground biomass (AGB) with a leave-one-out cross-validation. Overall, our models achieved a coefficient of determination (R2) greater than 0.5 in all trials. Moreover, we found that canopy roughness has the ability to discern AGB variations among different genotypes. Our test trials demonstrate the potential of canopy roughness as a reliable trait for high-throughput phenotyping to estimate AGB. As such, canopy roughness provides practical information to breeders in order to select phenotypes on the basis of UAS data.
机译:迫切需要经济高效的表型方法来推进作物遗传,以满足未来几十年的食品,燃料和纤维需求。具体而言,在字段中的绘图级别特征表征特别令人感兴趣。用于UAS(无人机空中系统)的高分辨率成像传感器的最新进展集中在收集详细的表型测量的潜在解决方案。我们将冠层粗糙引入新的植物策划层面特质。通过从UA收集的光学数据来测试其与大豆以估计生物质的光学数据测试其可用性。在R2生长期期间,我们验证了108种大豆[Glycine Max(L.)Merr。]重组近亲。 Sensefly eBee UAS平台用Sensefly S.O.D.A获得了空中图像。紧凑型数码相机。使用来自运动(SFM)技术的结构,我们重建了大豆实验的3D点云。开发了一种用于特征提取的新型管道,以从点云计算顶篷粗糙度。我们使用回归分析与现场测量的上面的生物量(AGB)相关联的冠层粗糙度,具有休假交叉验证。总体而言,我们的模型在所有试验中达到了大于0.5的测定系数(R2)。此外,我们发现树冠粗糙度具有探测不同基因型之间的AGB变异的能力。我们的测试试验证明了树冠粗糙度作为估计AGB的高吞吐量表型的可靠性状。因此,天底粗糙度为繁殖者提供实际信息,以便在UAS数据的基础上选择表型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号