首页> 外文OA文献 >Gravity Matching Aided Inertial Navigation Technique Based on Marginal Robust Unscented Kalman Filter
【2h】

Gravity Matching Aided Inertial Navigation Technique Based on Marginal Robust Unscented Kalman Filter

机译:基于边缘稳健的卡尔曼滤波器的重力匹配辅助惯性导航技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with the topic of gravity matching aided inertial navigation technology using Kalman filter. The dynamic state space model for Kalman filter is constructed as follows: the error equation of the inertial navigation system is employed as the process equation while the local gravity model based on 9-point surface interpolation is employed as the observation equation. The unscented Kalman filter is employed to address the nonlinearity of the observation equation. The filter is refined in two ways as follows. The marginalization technique is employed to explore the conditionally linear substructure to reduce the computational load; specifically, the number of the needed sigma points is reduced from 15 to 5 after this technique is used. A robust technique based on Chi-square test is employed to make the filter insensitive to the uncertainties in the above constructed observation model. Numerical simulation is carried out, and the efficacy of the proposed method is validated by the simulation results.
机译:本文涉及使用卡尔曼滤波器的辅助惯性导航技术的重心匹配主题。卡尔曼滤波器的动态状态空间模型构造如下:惯性导航系统的误差方程被用作过程方程,而基于9点表面插值的局部重力模型被用作观察方程。使用Unscented Kalman滤波器来解决观察方程的非线性。过滤器以两种方式精制如下。使用边缘化技术来探索条件线性的子结构以减少计算负荷;具体地,在使用该技术之后,所需SIGMA点的数量从15到5减少。采用基于Chi-Square测试的鲁棒技术来使滤波器对上述构造观察模型中的不确定性不敏感。进行数值模拟,并通过模拟结果验证了所提出的方法的功效。

著录项

  • 作者

    Ming Liu; Guobin Chang;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号