首页> 外文OA文献 >Deep Homography Estimation and Its Application to Wall Maps of Wall-Climbing Robots
【2h】

Deep Homography Estimation and Its Application to Wall Maps of Wall-Climbing Robots

机译:深度同住估计及其在攀岩机器人墙地图中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When locating wall-climbing robots with vision-based methods, locating and controlling the wall-climbing robot in the pixel coordinate of the wall map is an effective alternative that eliminates the need to calibrate the internal and external parameters of the camera. The estimation accuracy of the homography matrix between the camera image and the wall map directly impacts the pixel positioning accuracy of the wall-climbing robot in the wall map. In this study, we focused on the homography estimation between the camera image and wall map. We proposed HomographyFpnNet and obtained a smaller homography estimation error for a center-aligned image pair compared with the state of the art. The proposed hierarchical HomographyFpnNet for a non-center-aligned image pair significantly outperforms the method based on artificially designed features + Random Sample Consensus. The experiments conducted with a trained three-stage hierarchical HomographyFpnNet model on wall images of climbing robots also achieved small mean corner pixel error and proved its potential for estimating the homography between the wall map and camera images. The three-stage hierarchical HomographyFpnNet model has an average processing time of 10.8 ms on a GPU. The real-time processing speed satisfies the requirements of wall-climbing robots.
机译:当用基于视觉的方法定位攀爬的机器人时,定位和控制墙壁图的像素坐标中的壁爬机器人是一种有效的替代方案,消除了校准相机的内部和外部参数的需要。相机图像和墙壁地图之间的同位矩阵的估计精度直接影响墙壁图中壁爬机器人的像素定位精度。在这项研究中,我们专注于相机图像和墙壁地图之间的同字估计。与现有技术相比,我们提出了众所的邻居FPNNET,并获得了中心对齐图像对的较小的相同估计误差。用于非中心对齐图像对的提议的分层邻接汇流汇编显着优于基于人工设计的功能+随机样本共识的方法。在攀爬机器人的墙壁图像上进行了训练的三阶段分层识别FPNNET模型进行的实验,也实现了小平均角落像素误差,并证明了其估计墙壁地图和相机图像之间的邻居的可能性。三级分层识别FPNNET模型在GPU上的平均处理时间为10.8 ms。实时处理速度满足壁攀岩机器人的要求。

著录项

  • 作者

    Qiang Zhou; Xin Li;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号