首页> 外文OA文献 >Online Operation Risk Assessment of the Wind Power System of the Convolution Neural Network (CNN) Considering Multiple Random Factors
【2h】

Online Operation Risk Assessment of the Wind Power System of the Convolution Neural Network (CNN) Considering Multiple Random Factors

机译:考虑多种随机因子的卷积神经网络风电系统的在线运行风险评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to solve the problem of the inaccuracy of the traditional online operation risk assessment model based on a physical mechanism and the inability to adapt to the actual operation of massive online operation monitoring data, this paper proposes an online operation risk assessment of the wind power system of the convolution neural network (CNN) considering multiple random factors. This paper analyzes multiple random factors of the wind power system, including uncertain wind power output, load fluctuations, frequent changes in operation patterns, and the electrical equipment failure rate, and generates the sample data based on multi-random factors. It uses the CNN algorithm network, offline training to obtain the risk assessment model, and online application to obtain the real-time online operation risk state of the wind power system. Finally, the online operation risk assessment model is verified by simulation using the standard network of 39 nodes of 10 machines New England system. The results prove that the risk assessment model presented in this paper is more rapid and suitable for online application.
机译:为了解决传统在线运营风险评估模型的不准确性的问题,基于物理机制,无法适应大规模在线运行监测数据的实际运行,提出了对风力的在线运行风险评估考虑多个随机因素的卷积神经网络(CNN)的系统。本文分析了风电系统的多个随机因子,包括不确定的风力输出,负荷波动,操作模式频繁变化以及电气设备故障率,并基于多随机因子产生样本数据。它使用CNN算法网络,离线训练来获得风险评估模型,并在线申请获得风电系统的实时在线运行风险状态。最后,通过使用10台机器新英格兰系统的39个节点的标准网络仿真验证在线运行风险评估模型。结果证明,本文提出的风险评估模型更加迅速,适合在线申请。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号