首页> 外文OA文献 >Missing Values and Optimal Selection of an Imputation Method and Classification Algorithm to Improve the Accuracy of Ubiquitous Computing Applications
【2h】

Missing Values and Optimal Selection of an Imputation Method and Classification Algorithm to Improve the Accuracy of Ubiquitous Computing Applications

机译:缺失的值和最优选择载体方法和分类算法,提高普遍存在计算应用的准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a ubiquitous environment, high-accuracy data analysis is essential because it affects real-world decision-making. However, in the real world, user-related data from information systems are often missing due to users’ concerns about privacy or lack of obligation to provide complete data. This data incompleteness can impair the accuracy of data analysis using classification algorithms, which can degrade the value of the data. Many studies have attempted to overcome these data incompleteness issues and to improve the quality of data analysis using classification algorithms. The performance of classification algorithms may be affected by the characteristics and patterns of the missing data, such as the ratio of missing data to complete data. We perform a concrete causal analysis of differences in performance of classification algorithms based on various factors. The characteristics of missing values, datasets, and imputation methods are examined. We also propose imputation and classification algorithms appropriate to different datasets and circumstances.
机译:在普遍存在的环境中,高精度数据分析至关重要,因为它会影响真实的决策。然而,在现实世界中,由于用户对隐私或缺乏提供完整数据的义务,信息系统的用户相关数据通常缺少。这种数据不完整性可以使用分类算法损害数据分析的准确性,这可以降低数据的值。许多研究已经尝试克服这些数据不完整问题,并使用分类算法提高数据分析的质量。分类算法的性能可能受到缺失数据的特征和模式的影响,例如丢失数据与完整数据的比率。基于各种因素,对分类算法性能的差异进行了具体的因果分析。检查了缺失值,数据集和估算方法的特征。我们还提出了适合于不同数据集和情况的估算和分类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号