首页> 外文OA文献 >SkyQuery: An Implementation of a Parallel Probabilistic Join Engine for Cross-Identification of Multiple Astronomical Databases
【2h】

SkyQuery: An Implementation of a Parallel Probabilistic Join Engine for Cross-Identification of Multiple Astronomical Databases

机译:SkyQuery:用于跨识别多个天文数据库的并行概率加入引擎的实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-wavelength astronomical studies require cross-identification ofdetections of the same celestial objects in multiple catalogs based onspherical coordinates and other properties. Because of the large data volumesand spherical geometry, the symmetric N-way association of astronomicaldetections is a computationally intensive problem, even when sophisticatedindexing schemes are used to exclude obviously false candidates. Legacyastronomical catalogs already contain detections of more than a hundred millionobjects while the ongoing and future surveys will produce catalogs of billionsof objects with multiple detections of each at different times. The varyingstatistical error of position measurements, moving and extended objects, andother physical properties make it necessary to perform the cross-identificationusing a mathematically correct, proper Bayesian probabilistic algorithm,capable of including various priors. One time, pair-wise cross-identificationof these large catalogs is not sufficient for many astronomical scenarios.Consequently, a novel system is necessary that can cross-identify multiplecatalogs on-demand, efficiently and reliably. In this paper, we present oursolution based on a cluster of commodity servers and ordinary relationaldatabases. The cross-identification problems are formulated in a language basedon SQL, but extended with special clauses. These special queries arepartitioned spatially by coordinate ranges and compiled into a complex workflowof ordinary SQL queries. Workflows are then executed in a parallel frameworkusing a cluster of servers hosting identical mirrors of the same data sets.
机译:多波长天文学研究需要基于战神坐标和其他性质的多个目录中的同一天体对象的交叉识别。由于大数据量和球面几何形状,天文学的对称N-Way关联是一种计算密集型问题,即使使用先进的indExing方案用于排除明显的错误候选者。传统方框目录已经包含了超过一亿份的检测,而正在进行的和未来的调查将在不同时间产生多次检测的数组对象的目录。位置测量,移动和扩展对象的变化误差,以及其他物理属性使得有必要执行数学上正确,适当的贝叶斯概率算法的交叉识别,能够包括各种前沿。有一次,这些大目录的配对交叉识别对于许多天文方案不足以足够.Consequence,需要一种新颖的系统,可以在需求,有效可靠地交叉识别多平面图。在本文中,我们基于一系列商品服务器和普通的关系设计来展示Oulsolutive。交叉识别问题在于SQL语言中配制,但与特殊条款扩展。这些特殊查询通过坐标范围空间地分散,并编译成普通SQL查询的复杂工作流程。然后,在托管相同数据集的相同镜像的并行框架中执行工作流程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号