首页> 外文OA文献 >On the Optimal Density for Real-Time Data Gathering of Spatio-Temporal Processes in Sensor Networks
【2h】

On the Optimal Density for Real-Time Data Gathering of Spatio-Temporal Processes in Sensor Networks

机译:传感器网络时空过程实时数据采集的最佳密度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider sensor networks that measure spatio-temporaludcorrelated processes. An important task in such settings is the reconstruction at a certain node, called the sink, of the data at all points of the field. We consider scenarios where data is time critical, so delay results in distortion, or suboptimal estimation and control. For the reconstruction, the only data available to the sink are the values measured at the nodes of the sensor network, and knowledge of the correlation structure: this results in spatial distortion of reconstruction. Also, for the sake ofudpower efficiency, sensor nodes need to transmit their data by relaying through the other network nodes: this results in delay, and thus temporal distortion of reconstruction if time critical data is concerned. We study data gathering for the case of Gaussian processes in one- and two-dimensional grid scenarios, where we are able to write explicit expressions for the spatial and time distortion, and combine them into a single total distortion measure. We prove that, for various standard correlation structures, there is an optimal finite density of the sensor network forudwhich the total distortion is minimized. Thus, when power efficiency and delay are both considered in data gathering, it is useless from the point of view of accuracy of the reconstruction to increase the number of sensors above a certain threshold that depends on the correlationudstructure characteristics.
机译:我们考虑测量时空非相关过程的传感器网络。在这种设置中的一项重要任务是在该字段的所有点的某个节点(称为接收器)处重建数据。我们考虑的数据是时间紧迫的场景,因此延迟会导致失真,或导致次优的估计和控制。对于重建,可用于接收器的唯一数据是在传感器网络的节点处测量的值以及相关结构的知识:这会导致重建的空间失真。同样,为了提高功率效率,传感器节点需要通过其他网络节点进行中继来传输其数据:这会导致延迟,因此如果考虑到时间紧迫的数据,则会导致重建的时间失真。我们研究在一维和二维网格场景中针对高斯过程的数据收集,其中我们能够为空间和时间失真编写显式表达式,并将它们组合为单个总失真度量。我们证明,对于各种标准相关结构,存在传感器网络的最佳有限密度,从而使总失真最小。因此,当在数据收集中同时考虑功率效率和延迟时,从重构的准确性的角度来看,将传感器的数量增加到取决于相关结构特征的某个阈值以上是没有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号