首页> 外文OA文献 >Attitude Control and Stabilization of Spacecraft with a Captured Asteroid
【2h】

Attitude Control and Stabilization of Spacecraft with a Captured Asteroid

机译:捕获小行星对航天器的姿态控制和稳定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

National Aeronautics and Space Administration's Asteroid Redirect Mission (ARM) aims to capture a Near Earth Orbit (NEO) asteroid or a piece of a large asteroid and transport it to the Earth{Moon system. In this paper, we provide a detailed analysisudof one of the main control challenges for the first ARM mission concept, namely despinning and three-axis stabilizing the asteroid and spacecraft combination after the ARM spacecraft captures the tumbling NEO asteroid. We first show that control laws, which explicitly use the dynamics of the system in their control law equation, encounter a fundamental limitation due to modeling uncertainties. We show that in the presence of largeudmodeling uncertainties, the resultant disturbance torque for such control laws may well exceed the maximum control torque of the conceptual ARM spacecraft. We then numerically compare the performance of three viable control laws: the robust nonlinear tracking control law, the adaptive nonlinear tracking control law, and the simple derivative plus proportional-derivative linear control strategy. We conclude that under very small mod-udeling uncertainties, which can be achieved using online system identification, the robust nonlinear tracking control law guarantees exponential convergence to the fuel-optimal reference trajectory and hence consumes the least fuel. On the other hand, in the presence of large modeling uncertainties, measurement errors, and actuator saturations, the best strategy for stabilizing the asteroid and spacecraft combination is to first despin the system using a derivative (rate damping) linear control law and then stabilize the system in the desired orientation using the simple proportional-derivative linear control law. More-over, the fuel consumed by the conceptual ARM spacecraft using these control strategies is upper bounded by 300 kg for the nominal range of NEO asteroid parameters. We conclude this paper with specific design guidelines for the ARM spacecraft for efficiently stabilizing the tumbling NEO asteroid and spacecraft combination.
机译:美国国家航空航天局的小行星重定向任务(ARM)旨在捕获近地轨道(NEO)小行星或大型小行星的一部分,并将其运输到“地球{月球系统”。在本文中,我们对第一个ARM任务概念的主要控制挑战之一进行了详细的分析 ud,即在ARM航天器捕获正在翻滚的NEO小行星后,使小行星和航天器组合旋转并进行三轴稳定。我们首先表明,由于建模不确定性,在其控制律方程中明确使用系统动力学的控制律遇到了基本限制。我们表明,在存在较大 udmodeling不确定性的情况下,此类控制律的合成干扰转矩可能会大大超过概念性ARM航天器的最大控制转矩。然后,我们在数值上比较三种可行控制律的性能:鲁棒非线性跟踪控制律,自适应非线性跟踪控制律和简单导数加比例-导数线性控制策略。我们得出的结论是,在很小的模数不确定性(可以使用在线系统识别实现)的情况下,鲁棒的非线性跟踪控制律可保证以指数形式收敛至燃料最优的参考轨迹,从而使燃料消耗最少。另一方面,在存在较大的模型不确定性,测量误差和执行器饱和度的情况下,稳定小行星和航天器组合的最佳策略是首先使用导数(速率阻尼)线性控制定律对系统进行旋转,然后稳定使用简单的比例-导数线性控制定律,使系统处于期望的方向。而且,对于NEO小行星参数的标称范围,使用这些控制策略的概念性ARM航天器消耗的燃料上限为300千克。我们以适用于ARM航天器的特定设计准则作为本文的结尾,以有效地稳定正在翻滚的NEO小行星和航天器的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号