首页> 外文OA文献 >Multi-Agent Optimization for Residential Demand Response under Real-Time Pricing
【2h】

Multi-Agent Optimization for Residential Demand Response under Real-Time Pricing

机译:实时定价下的住宅需求响应多功能优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Demand response (DR) programs encourage consumers to adapt the time of using electricity based on certain factors, such as cost of electricity, renewable energy availability, and ancillary request. It is one of the most economical methods to improve power system stability and energy efficiency. Residential electricity consumption occupies approximately one-third of global electricity usage and has great potential in DR applications. In this study, we propose a multi-agent optimization approach to incorporate residential DR flexibility into the power system and electricity market. The agents collectively optimize their own interests; meanwhile, the global optimal solution is achieved. The agent perceives its environment, predicts electricity consumption, and forecasts electricity price, based on which it takes intelligent actions to minimize electrical energy cost and time delay of using household appliances. The decision-making action is formulated into a convex program (CP) model. A distributed heuristic algorithm is developed to solve the proposed multi-agent optimization model. Case studies and numerical analysis show promising results with low variation of the aggregated load profile and reduction of electrical energy cost. The proposed approaches can be utilized to investigate various emerging technologies and DR strategies.
机译:需求响应(DR)计划鼓励消费者根据某些因素来调整使用电力的时间,例如电力成本,可再生能源可用性和辅助请求。它是提高电力系统稳定性和能效的最经济方法之一。住宅用电量占据全球电力用途的约三分之一,并在DR应用中具有很大的潜力。在这项研究中,我们提出了一种多功能优化方法,将住宅DR灵活性纳入电力系统和电力市场。代理商共同优化自己的利益;同时,实现了全局最优解决方案。该代理人认为其环境,预测电力消耗,并预测电价,基于这需要智能行动,以最大限度地减少使用家用电器的电能成本和时间延迟。决策操作被配制到凸面编程(CP)模型中。开发了一种分布式启发式算法来解决所提出的多代理优化模型。案例研究和数值分析表明,具有聚集负荷曲线的低变化和电能成本的低变化结果。拟议的方法可用于调查各种新兴技术和博士策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号