首页> 外文OA文献 >Novel Disc Hydrodynamic Polishing Process and Tool for High-Efficiency Polishing of Ultra-Smooth Surfaces
【2h】

Novel Disc Hydrodynamic Polishing Process and Tool for High-Efficiency Polishing of Ultra-Smooth Surfaces

机译:用于超光滑表面的高效抛光的新型圆盘水动力抛光工艺和工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, large aspheric surfaces, including non-rotationally symmetric surfaces, are increasingly used in ground- and space-based astronomical instruments. The fabrication of these surfaces with sub-micrometric form accuracy and nanometric surface finish, especially for hard and difficult-to-machine materials, has always been a challenge to the optics industry. To produce ultra-smooth surfaces efficiently without subsurface damage and surface scratches, a novel disc hydrodynamic polishing (DHDP) process is proposed through the combination of elastic emission machining and fluid jet polishing. Firstly, the polishing tool for DHDP was carefully designed and the feasibility of the proposed method was experimentally verified. The liquid film was found to act as a carrier of abrasive grains between the polishing tool and the polished surface. Next, computational fluid dynamics (CFD) was used to study the effects of process parameters on the slurry film flow in DHDP. Finally, preliminary experiments were conducted to verify the CFD simulations. The experimental data reasonably agree with the simulation results, which show that increasing rotational speed has no influence on the film thickness for the polishing tool without grooves, but leads to increased film thickness for the polishing tool with grooves. Moreover, DHDP can efficiently reduce the surface roughness and acquire ultra-smooth surfaces without subsurface damage and scratches.
机译:如今,包括非旋转对称表面的大型非球面,越来越多地用于基于地面和空间的天文仪器。这些表面具有亚微米的精度和纳米表面光洁度的制造,特别是对于硬且难以对机材料,对光学行业来说一直是一个挑战。为了在没有地下损伤和表面划痕的情况下有效地生产超光滑表面,通过弹性发射加工和流体射流抛光的组合提出了一种新型盘流体动力学抛光(DHDP)工艺。首先,精心设计了用于DHDP的抛光工具,实验验证了所提出的方法的可行性。发现液体膜用作抛光工具和抛光表面之间的磨粒的载体。接下来,使用计算流体动力学(CFD)研究过程参数对DHDP中浆料膜流量的影响。最后,进行了初步实验以验证CFD模拟。实验数据与模拟结果合理地同意,表明旋转速度的增加对抛光工具的膜厚度没有影响而没有凹槽,而是导致抛光工具的膜厚度增加。此外,DHDP可以有效地降低表面粗糙度,并在没有地下损坏和划痕的情况下获取超光滑表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号