首页> 外文OA文献 >Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms
【2h】

Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

机译:矩阵乘积运算符,矩阵乘积状态和从头算密度矩阵重归一化组算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
机译:从头计算密度矩阵重归一化组(DMRG)算法的当前描述使用两种表面上不同的语言:较旧的重归一化组语言和重归一化运算符,以及较新的矩阵乘积状态和矩阵乘积运算符语言。当用两个不同的词汇表编写时,相同的算法可能看起来截然不同。在这项工作中,我们在几种情况下仔细描述了两种语言之间的翻译。首先,我们描述如何使用基于矩阵乘积运算符的代码有效地实现从头开始的DMRG扫描,并等效于原始的重新规范化的运算符实现。接下来,我们描述如何在基于纯重归一化运算符的DMRG代码中实现通用矩阵乘积运算符/矩阵乘积状态代数。最后,我们讨论了由矩阵乘积运算符语言推动的从头开始DMRG扫描算法的两项改进:汉密尔顿压缩,以及允许完美计算并行性的运算符表示之和。此处描述的联系和对应关系将未来的发展与过去联系起来,对于有效地实现从头开始的DMRG和相关算法的持续发展至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号