首页> 外文OA文献 >Simultaneous OH-PLIF and schlieren imaging of flame acceleration in an obstacle-laden channel
【2h】

Simultaneous OH-PLIF and schlieren imaging of flame acceleration in an obstacle-laden channel

机译:同时在障碍物通道中进行火焰加速的OH-PLIF和schlieren成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flame acceleration in stoichiometric H_2/O_2 at 12 and 25 kPa initial pressure in an obstacle-laden square cross-section channel was studied experimentally using planar laser-induced fluorescence imaging of hydroxyl radicals (OH-PLIF) and simultaneous high-speed schlieren imaging. Results were obtained resolving the explosion front structure as it develops immediately after ignition as a slow-flame to the eventual formation of a shock-flame complex in the fast-flame regime. The images provide a novel level of detail and allow for the determination of the effects of turbulence-flame and shock-flame interaction. In the slow-flame regime, vortex shedding off obstacle edges occurs over long time-scales, vortices are convected downstream and turbulent combustion takes place in the obstacle wakes. The fast-flame regime is marked by the presence of compression waves (and shock waves) which interact with the flame and cause macroscopic deformation of the flame and small-scale wrinkling due to Richtmyer-Meshkov instability. A quasi-steady fast-flame is characterized by the close proximity of the precursor shock and the turbulent flame. The flow-field that governs the flame shape is established impulsively by the precursor shock. Shock-flame interactions lead to flame front perturbations on both small and large scales. The OH-PLIF technique makes it possible to discern the flame front from other density interfaces that appear in the complex fast-flame structure observed in schlieren images and also eliminates the line-of-sight integration limitation.
机译:使用平面激光诱导的羟基自由基荧光成像(OH-PLIF)和同步高速schlieren成像,实验研究了载有障碍物的方形截面通道中初始压力为12和25 kPa的化学计量H_2 / O_2中的火焰加速。获得了解决爆炸前部结构的结果,因为爆炸后结构在点燃后立即以缓慢火焰的形式发展到在快速火焰状态下最终形成冲击火焰复合物。这些图像提供了新颖的细节水平,并可以确定湍流火焰和冲击火焰相互作用的影响。在慢火焰状态下,在较长的时间尺度上会发生涡旋脱落,形成障碍物边缘,涡流向下游对流,并在障碍物尾流中发生湍流燃烧。快速燃烧状态的特征是存在压缩波(和冲击波),压缩波(和冲击波)与火焰相互作用,并由于Richtmyer-Meshkov不稳定性而引起火焰的宏观变形和小规模的起皱。准稳定快速火焰的特征是前体冲击和湍流火焰非常接近。通过前驱冲击来冲动地建立起控制火焰形状的流场。冲击-火焰相互作用会导致火焰前扰动,无论是小尺度还是大尺度。 OH-PLIF技术可以将火焰前沿与在纹影图像中观察到的复杂的快速火焰结构中出现的其他密度界面区分开,并且还消除了视线积分限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号