首页> 外文OA文献 >Research and Application of Hybrid Wind-Energy Forecasting Models Based on Cuckoo Search Optimization
【2h】

Research and Application of Hybrid Wind-Energy Forecasting Models Based on Cuckoo Search Optimization

机译:基于Cuckoo搜索优化的混合风能预测模型的研究与应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wind energy is crucial renewable and sustainable resource, which plays a major role in the energy mix in many countries around the world. Accurately forecasting the wind energy is not only important but also challenging in order to schedule the wind power generation and to ensure the security of wind-power integration. In this paper, four kinds of hybrid models based on cyclic exponential adjustment, adaptive coefficient methods and the cuckoo search algorithm are proposed to forecast the wind speed on large-scale wind farms in China. To verify the developed hybrid models’ effectiveness, wind-speed data from four sites of Xinjiang Uygur Autonomous Region located in northwest China are collected and analyzed. Multiple criteria are used to quantitatively evaluate the forecasting results. Simulation results indicate that (1) the proposed four hybrid models achieve desirable forecasting accuracy and outperform traditional back-propagating neural network, autoregressive integrated moving average as well as single adaptive coefficient methods, and (2) the parameters of hybrid models optimized by artificial intelligence contribute to higher forecasting accuracy compared with predetermined parameters.
机译:风能是至关重要的可再生能力和可持续资源,这在全球许多国家的能量组合中发挥着重要作用。准确预测风能不仅重要,而且还挑战,以便安排风力发电并确保风力集成的安全性。本文采用了基于循环指数调整,自适应系数方法和杜鹃搜索算法的四种混合模型,以预测中国大型风电场的风速。为了验证开发的混合模型的有效性,收集并分析了位于中国西北部的新疆维吾尔自治区四个地点的风速数据。多种标准用于定量评估预测结果。仿真结果表明,(1)所提出的四种混合模型实现了理想的预测精度和优于传统的背传播神经网络,自回归综合移动平均线以及单一自适应系数方法,以及(2)通过人工智能优化的混合模型参数与预定参数相比,有助于更高的预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号