首页> 外文OA文献 >Energy-Efficient Time-Domain Vector-by-Matrix Multiplier for Neurocomputing and Beyond
【2h】

Energy-Efficient Time-Domain Vector-by-Matrix Multiplier for Neurocomputing and Beyond

机译:节能时域矢量逐个矩阵乘法器,用于神经关键词和超越

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose an extremely energy-efficient mixed-signal approach for performingvector-by-matrix multiplication in a time domain. In such implementation,multi-bit values of the input and output vector elements are represented withtime-encoded digital signals, while multi-bit matrix weights are realized withcurrent sources, e.g. transistors biased in subthreshold regime. With ourapproach, multipliers can be chained together to implement large-scale circuitscompletely in a time domain. Multiplier operation does not rely onenergy-taxing static currents, which are typical for peripheral andinput/output conversion circuits of the conventional mixed-signalimplementations. As a case study, we have designed a multilayer perceptron,based on two layers of 10x10 four-quadrant vector-by-matrix multipliers, in55-nm process with embedded NOR flash memory technology, which allows forcompact implementation of adjustable current sources. Our analysis, based onmemory cell measurements, shows that at high computing speed the drain-inducedbarrier lowering is a major factor limiting multiplier precision to ~6 bit.Post-layout estimates for a conservative 6-bit digital input/output NxNmultiplier designed in 55 nm process, including I/O circuitry for convertingbetween digital and time domain representations, show ~7 fJ/Op for N>200, whichcan be further lowered well below 1 fJ/Op for more optimal and aggressivedesign.
机译:我们提出了一种极其节能的混合信号方法,用于在时域中执行逐矩阵乘法。在这种实现中,输入和输出矢量元素的多比特值被用时间编码的数字信号表示,而多位矩阵权重被实现为电流源,例如,跨阈值制度偏置的晶体管。借助OURAPHOACH,可以将乘法器封装在一起,以在时域中实现大规模电路。乘法器操作不依赖于持续征税的静态电流,这对于传统混合信号拼接的外设和输出/输出转换电路是典型的。作为一个案例研究,我们设计了一种多层的Perceptron,基于两层10x10四象限向量乘法乘法器,嵌入式NOR闪存技术的55-nm过程,这允许Forcompact实现可调电流源。我们的分析,基于ONMEMORY CELL测量,表明,在高计算速度下,漏极诱导票载波降低是限制乘数精度的主要因素为〜6位的达到6位数字输入/输出NXNMultiper的估计(55 nm)过程,包括用于转换的I / O电路,用于转换数字和时域表示,对于N> 200表示〜7 FJ / OP,其中ACAN进一步低于1 FJ / OP,以获得更优化和爆发的假期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号