首页> 外文OA文献 >Mechanistic Insights on Heme-to-Heme Transmembrane Electron Transfer Within NADPH Oxydases From Atomistic Simulations
【2h】

Mechanistic Insights on Heme-to-Heme Transmembrane Electron Transfer Within NADPH Oxydases From Atomistic Simulations

机译:原子模拟中NADPH Oxydase内血红素到血红液跨膜电子转移的机械洞察

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

NOX5 is a member of the NADPH oxidase family which is dedicated to the production of reactive oxygen species. The molecular mechanisms governing transmembrane electron transfer (ET) that permits to shuttle electrons over the biological membrane have remained elusive for a long time. Using computer simulations, we report conformational dynamics of NOX5 embedded within a realistic membrane environment. We assess the stability of the protein within the membrane and monitor the existence of cavities that could accommodate dioxygen molecules. We investigate the heme-to-heme electron transfer. We find a reaction free energy of a few tenths of eV (ca. −0.3 eV) and a reorganization free energy of around 1.1 eV (0.8 eV after including electrostatic induction corrections). The former indicates thermodynamically favorable ET, while the latter falls in the expected values for transmembrane inter-heme ET. We estimate the electronic coupling to fall in the range of the μeV. We identify electron tunneling pathways showing that not only the W378 residue is playing a central role, but also F348. Finally, we reveal the existence of two connected O2−binding pockets near the outer heme with fast exchange between the two sites on the nanosecond timescale. We show that when the terminal heme is reduced, O2 binds closer to it, affording a more efficient tunneling pathway than when the terminal heme is oxidized, thereby providing an efficient mechanism to catalyze superoxide production in the final step. Overall, our study reveals some key molecular mechanisms permitting reactive oxygen species production by NOX5 and paves the road for further investigation of ET processes in the wide family of NADPH oxidases by computer simulations.
机译:NOx5是NADPH氧化酶系列的成员,其专用于产生活性氧物质。控制跨膜电子转移(ET)的分子机制,其允许在生物膜上穿梭于生物膜上仍然难以难以捉摸。使用计算机仿真,我们在现实膜环境中报告NOx5的构象动态。我们评估膜内蛋白质的稳定性,并监测能够容纳二恶英分子的腔体的存在。我们研究了血红素到血红素电子转移。我们发现几十只EV(约0.3eV)的无反应能量,并且重组自由能约为1.1eV(在包括静电感应校正后0.8eV)。前者表明热力学良好的ET,而后者落入跨越血红素ET的预期值。我们估计以逐渐落入μev的范围内的电子耦合。我们识别电子隧道途径,表明不仅W378残留物在竞争中扮演核心作用,而且是F348。最后,我们揭示了外血红系附近的两个连接的O2绑定口袋,在纳秒少量尺度上的两个位点之间的快速交换。我们表明,当终端血红素减少时,O2更接近它,​​从而提供比终端血红素氧化时更有效的隧道途径,从而在最终步骤中提供有效的机制来催化超氧化物产生。总体而言,我们的研究揭示了一些允许NOX5产生反应性氧物种的关键分子机制,并铺设了通过计算机模拟进一步调查NADPH氧化酶广泛家族的进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号