首页> 外文OA文献 >Artificial Bee Colony Algorithm Based onK-Means Clustering for Multiobjective Optimal Power Flow Problem
【2h】

Artificial Bee Colony Algorithm Based onK-Means Clustering for Multiobjective Optimal Power Flow Problem

机译:基于人工蜂殖民地算法的多目标最优功率流量的onk-mear群体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An improved multiobjective ABC algorithm based on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II), the multiobjective particle swarm optimizer (MOPSO), and the multiobjective ABC (MOABC). Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF) problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.
机译:基于K-means聚类的改进的多目标ABC算法,称为CMOABC,提出。紧固规范MOABC的收敛速度,在所采用的蜜蜂的相位信息通信的方式被修改。为了保持种群的多样性,采用基于K-均值聚类multiswarm技术人口分解成多个集群。由于每个子分开发展的,每一个具体迭代后,人口将reclustered,方便不同集群之间的信息交流。新CMOABC的几个多目标测试函数示出了应用在性能上比快速的显着改善非支配排序遗传算法(NSGA-II),多目标粒子群优化(MOPSO),和多目标ABC(MOABC)。最后,CMOABC被应用于解决考虑了成本,损耗和发射的影响的目标函数的真实世界的最佳功率流(OPF)问题。 30总线IEEE测试系统以说明所提出的算法的应用。仿真结果表明,相对于NSGA-II,MOPSO和MOABC,建议CMOABC优于解决OPF问题,在优化精度方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号